
Attention Neural Networks

Amanda

September 28, 2021

Contents

Background 1
Inspiration from Biology . 1
Implicit Attention in Neural Networks . 1
Benefits of Explicit Attention . 1

Neural Networks 2
Feedforward Neural Networks . 2
Recurrent Neural Networks (RNNs) . 2
Convolutional Neural Networks (CNNs) . 4

Attention Networks in Natural Language Processing (NLP) 4
The First Attention Mechanism in Neural Machine Translation 4
The Transformers . 7

Attention Networks in Computer Vision 9
Spatial Attention . 9
Channel Attention . 10

Conclusion 11

References 12

Background

Deep learning, as a subfield of machine learning, has attracted a few waves of research
interests in the history. The current wave started in 2006, and is mainly due to increased
dataset sizes and computation resources that led to significantly improved model perfor-
mance [GBC16]. The models in deep learning, known as neural networks, have achieved
state-of-the-art performance in various tasks such as object detection and speech recogni-
tion [LBH15]. Researchers have designed different neural network architectures to tackle
different problems [LWL+17], and many neural networks that performed well in natural
language processing (NLP) [BCB14] [VSP+17] and computer vision [PWLK18] [WPLK18]
[WJQ+17] employed attention mechanisms. For simplicity, we will use “attention networks”
to refer to neural networks with attention mechanisms. This essay will introduce the notion
of attention in neural networks, and provide an overview of some attention network struc-
tures. Since attention networks also have many variants, we will discuss specific instances
in the context of different applications.

Inspiration from Biology

The idea of attention in machine learning was inspired by the concept of selective attention
in biology and psychology. Our brains pay selective attention to only a small fraction
of all the visual information that the eyes perceive, and we are only able to discern and
focus on a conversation in a noisy environment because we can selectively attend to specific
auditory information [FRC10]. However, the attention mechanisms do not fully resemble
the structures of human perceptual systems and neural systems, as the biological structures
are too complex, and mechanisms that try to resemble them as much as possible may take
too much computation resources and may even have less reliable performance [FRC10].

Implicit Attention in Neural Networks

A neural network in supervised learning can be viewed as a parametric function that
maps an input to an output. By construction, the network (possibly without attention
mechanisms) implicitly pays more attention to some input dimensions than others, and
the network Jacobian reveals which input dimensions have more influence over each output
dimension [Gra]. For a differentiable neural network mapping an M -dimensional input x to
an N -dimensional output y, the Jacobian is an N ×M matrix J , with Jij = ∂yi/∂xj .

For example, a convolutional neural network (CNN) that classifies M -dimensional images
might map input pixels to the probability that the image shows a cat and the probability
that it shows a dog (so N = 2 in this case), and the CNN might implicitly focus on the
pixels that constitute the animal’s ears more than those that constitute the background.

Benefits of Explicit Attention

Although neural networks can learn implicit attention, there is little control over what to
pay attention to. For example, the basic recurrent neural network for machine translation
takes a sequence of input words and outputs the prediction of the next word, but due to
the vanishing gradient problem, it can hardly learn the relevance of earlier inputs when the
sequence is long, even if the early inputs are more relevant to the output [BSF94]. Hence,
researchers have used attention mechanisms to explicitly build attention into the networks.
Such networks are more likely to reap the benefits of selective attention, ignoring irrele-
vant information and spending more computation power analysing relevant inputs [Gra].

1

Moreover, the parameters and outputs of the attention mechanisms provide straightforward
insight about which parts of the input are the most relevant to the output, making it easier
for humans to interpret what the model focuses on [VSP+17].

Neural Networks

This section briefly introduces neural network architectures that the attention mechanisms
in the next two sections will build upon. This section is written with reference to [GBC16],
which gives more comprehensive descriptions of the architectures.

Feedforward Neural Networks

Feedforward neural networks, also known as the multilayer perceptions (MLPs), have the
most fundamental deep neural network architectures. A neuron is the basic unit of an MLP.
It takes some input vector x and performs a linear transformation on them to produce an
output known as its pre-activation wTx + b, where w and b are model parameters. A layer
of an MLP consists of one or more neurons, and there can be a non-linear transformation
on the pre-activations of its neurons to produce outputs known as the activations. This
non-linear transformation may be a function across all pre-activations of this layer like the
softmax function, or it may independently transform the pre-activation of each neuron.
The first layer is the input layer that passes the input x into the network, the final layer is
the output layer, and any other layers in the middle are hidden layers. Figure 1 shows a
simple MLP. In the model training, we aim to find model parameters that minimise some
loss function, such as the negative log likelihood. Information only flows forward in an MLP.
Other types of neural networks also consist of neurons and have similar training methods,
but the connections between neurons may be different.

Figure 1: A multi-layer perceptron with 3 layers [GBC16]

Recurrent Neural Networks (RNNs)

RNNs are usually used in tasks where the inputs are sequential data, such as words in a
sentence, or signals through time. The inputs might be a sequence of real values, or it might
be a sequence of vectors. Figure 2 shows a simple RNN on the left with the output of the
hidden layer at time step t− 1 also serving as the input to the hidden layer at time step t,
and it shows the unfolded RNN on the right.

2

Figure 2: A recurrent neural network (left) with input layer x, hidden layer h and output
layer o. U , V and W are model parameters. L is the loss function that computes loss given
the predicted value o and the true value y. The black square represents a delay by one time
step. The RNN is unfolded to give the network on the right [GBC16]

The RNNs introduced above has the hidden state (which is the output of the hidden
layer) at time step t representing some compressed information about the inputs at time
steps at and before t, so the output of the network at time step t depends on those inputs
only. Bidirectional RNNs, however, has unrolling in both directions as shown in Figure 3,
such that the output at time step t depends on all inputs, particularly inputs whose time
steps are around t. Bidirectional RNNs are better for tasks like speech recognition, where
the output at a time step can depend on the context around the time step.

Figure 3: A bidirectional recurrent neural network [GBC16]

With some modifications, we have RNNs that map a sequence of inputs to a single “context
vector” that summarises the inputs, and RNNs that map a single input vector to a sequence

3

of outputs. These can constitute the encoder-decoder model as shown in Figure 4, commonly
used in machine translation.

Figure 4: A simple encoder-decoder architecture consisting of RNNs [GBC16]

Convolutional Neural Networks (CNNs)

CNNs are typically used for tasks whose inputs have a grid structure. For example, if the
input is an image with width w and height h in c channels, the input may be represented
by a grid of w × h × c values. CNNs use the convolution operation between some network
layers, and most CNNs also use another operation called pooling. Convolution applies a
kernel across an input grid to extract the presence of some pattern that the kernel detects
at different parts of the input (see Figure 5), such as sharp vertical edges in an image. The
output, sometimes called the “feature map”, also takes the shape of a grid. The kernel
is a matrix whose components are model parameters to be learnt. Pooling reduces the
dimensions of the input grid, dividing the input grid into patches and summarising each
patch into a single value, often by taking the maximum or the average. Figure 6 shows a
common structure found in CNN architectures.

Attention Networks in Natural Language Processing (NLP)

In this section, we discuss two attention mechanisms used for NLP, with neural machine
translation as the concrete task. Neural machine translation is the task of translating an
input sequence in one language to an equivalent output sequence in another language using a
neural network [BCB14]. We will first introduce an attention mechanism built upon RNNs,
and then one that gets rid of the recurrent structure.

The First Attention Mechanism in Neural Machine Translation

[BCB14] first proposed to use an attention mechanism in neural machine translation, mak-
ing an improvement from the basic encoder-decoder models. Figure 7 shows the architecture.

4

Figure 5: The convolution operation [GBC16]

Figure 6: A common structure in convolutional neural networks [GBC16]

The encoder is a bidirectional RNN. Each of the T = Tx input words is represented
by a vector xj where j ∈ {1, ..., Tx}, and the outputs are a sequence of vectors yi where
i ∈ {1, ..., Ty}. Let hj be the concatenation of the two hidden states from the encoder at
position j. The new model does not attempt to compress all information about the inputs

5

Figure 7: The attention mechanism in [BCB14]

into a single context vector like the original encoder-decoder does. Each hidden state hj
from the encoder now serves as a representation of input information around the position j,
and for each i ∈ {1, ..., Ty}, the decoder uses a context vector ci for the output word yi by

ci =

Tx∑
j=1

αijhj (1)

ci is therefore a weighted sum of the hidden states at all input positions. αij is defined
below.

The decoder has a sequence of hidden states si where

si = f(si−1,yi−1, ci) (2)

for some function f to be learnt. Intuitively, si remembers the previous output sequence
and considers the current context vector to produce the current output vector. αij is then
computed by

αij =
exp(rij)∑Tx

k=1 exp(rik)
(3)

where
rij = a(si−1,hj) (4)

The function a in Equation 4 evaluates the relevance between the output at position i and
the inputs around position j, and a is incorporated into the neural network as a feedfor-
ward module, jointly trained with the other modules by backpropagation. As a result, the
weighted sum ci pays more attention to the inputs that are more relevant to the output at
i.

The model is compared against the more conventional encoder-decoder model in [CvMG+14]
twice, first with sentences that have up to 30 words, and then up to 50 words, and the new
model outperformed the conventional one in both cases. In particular, [BCB14] conjectured
that the conventional encoder-decoder would underperform given longer sentences since it
needs to encode the entire input into a fixed-length context vector. The experimental results
showed that the new model is significantly better at translating longer sentences, corrobo-
rating the conjecture.

6

The Transformers

[VSP+17] introduced an architecture called ”the Transformer” for sequence modelling
tasks. It replaces RNNs with multi-head self-attention mechanisms. Compared to RNNs,
self-attention mechanisms have a lower computational complexity as long as the sequence
length is smaller than the number of dimensions in the representation of a symbol. Moreover,
multi-head self-attention allows much more parallelised computation, and it learns long-
range dependencies between words more easily.

Figure 8: The Transformer architecture. The three inputs of a multi-head attention module
are used as key, value and query from left to right in that order [VSP+17]

The Transformer architecture is shown in Figure 8, and it also contains an encoder and a
decoder. The encoder maps a sequence of pre-processed input representations (x1, ...,xn) to
intermediate representations (z1, ..., zn). The decoder takes the intermediate representations
together with previously generated outputs to generate the next output symbol, thereby
producing the output sequence (y1, ...ym) one at a time. The encoder consists of a stack
of N layers, each having a multi-head self-attention sub-layer followed by a feedforward
sub-layer, and the final encoder layer produces (z1, ..., zn). Similarly, the decoder contains
a stack of N layers, but each of them contains an additional multi-head attention sub-layer
that takes the output from the encoder. Each of the N layers in the decoder shares the same
(z1, ..., zn) from the encoder, while passing the output of this layer as the other input to the
next decoder layer. There are residual connections that skip the attention and feedforward
modules for faster learning, as they counteract vanishing gradients in backpropagation.

7

All the layers mentioned above and the embedding layers have dmodel dimensions so that
the number of dimensions is compatible between layers. That is, every xi and zi have dmodel
dimensions. Note that although the model takes the entire sequence of inputs at once, a layer
works on each input identically (in the context of all inputs) and produces a corresponding
output, so we do not need to worry about the sequence lengths. The rest of this subsection
explains how that is done.

The input embedding layer pre-processes each input symbol into a meaningful dmodel-
dimensional vector xi for later use. However, identical symbols give rise to identical em-
beddings, so these embeddings do not encode the positions of symbols in the sequence. The
Transformer adds information about the relative positions of symbols via positional encod-
ings so that the model can attend to this property. A symbol’s positional encoding also has
dmodel dimensions and can be added to the symbol’s embedding directly.

The self-attention mechanism computes a new representation of its input sequence with
regard to the relations between symbols at different positions. [VSP+17] uses the scaled
dot-product attention function for the self-attention mechanisms as well as the attention
mechanism across the encoder and the decoder.

Figure 9: The scaled dot-product attention function. The mask is applied in the self-
attention for previous outputs in the decoder, so as to ensure that the resulting representation
of the output at position i only depends on outputs at positions less than i [VSP+17]

Figure 9 shows the attention function. It takes a “query” vector, a “key” vector and a
“value” vector for each input. The query and the key both have dk dimensions, the value
dv dimensions. For each input, the mechanism takes the dot product between its query and
the key of every input symbol, scaling the results by 1/

√
dk to avoid exploding values due

to high dimensionality, and applies softmax on the resulting values to get weights. The
output, which is the new representation of the input, is then the weighted sum of the value
vectors of all the input symbols. We can collate all queries as rows in the matrix Q, keys in
the matrix K, and values in V, and express the operation on all inputs by

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (5)

The outputs are the rows of the resulting matrix.

8

The multi-head attention (Figure 10) performs h copies (or heads) of the attention func-
tion, but rather than dmodel-dimensional keys, queries and values, it projects the Q, K and
V matrices to different subspaces via linear transformations. The linear transformations are
expressed by matrices with appropriate dimensions, and the matrices are model parameters
to be learnt. [VSP+17] uses transformations such that dk = dv = dmodel/h, and the output
from all the heads are concatenated and passed through another linear transformation to
give outputs of dmodel dimensions.

Figure 10: Multi-head attention with h heads [VSP+17]

The Transformer attained state-of-the-art performance in translation tasks, and it is faster
to train than the common encoder-decoder architectures that use RNNs. It even outper-
formed all previously reported models in one of the translations tasks used as an experiment.

Attention Networks in Computer Vision

Attention mechanisms for CNNs, which are commonly used in computer vision, often
attend to spatial dimensions and channel dimensions. This section introduces an architecture
for each of these two types of mechanisms.

Spatial Attention

[JSZ+15] presented an architecture called “spatial transformers” (Figure 11), which gen-
eralises a few previous differentiable spatial attention mechanisms. A spatial transformer
consists of three parts, namely the localisation net, the grid generator and the sampler.
It transforms each channel of the input feature map U identically. The entire module is
differentiable due to the use of a differentiable sampler, so it allows end-to-end training by
backpropagation.

The localisation network takes a feature map, U ∈ RH×W×C , where H is the height, W
the width, and C the number of channels. It then outputs θ = floc(U) as a parameter for
the grid generator. That is, floc is implemented as the localisation network, which can take
many forms, such as a convolutional network. The parameterised grid generator Tθ takes
the parameter θ and produces a mapping from a location Gi = (xti, y

t
i) in the desired output

9

Figure 11: The spatial transformer architecture [JSZ+15]

grid G to a location in the input feature map, (xsi , y
s
i), and (xsi , y

s
i) serves as the centre of

the sampling location for generating (xti, y
t
i) in the next step. The output feature map of

the module is V ∈ RH′×W ′×C . In each channel c ∈ C, to generate the value at the spatial
location (xti, y

t
i) in V , differentiable image sampling applies a kernel centred at (xsi , y

s
i) to

U , where (xsi , y
s
i) = Tθ(x

t
i, y

t
i). The transformation Tθ can take many forms too, allowing

operations like cropping, translation, rotation and skew. By restricting its form, we can also
enforce what it attends to. The mechanism only attends to the part of the input that is
used. Moreover, by explicitly learning transformations-invariant representations, it ignores
the noise in the input due to those transformations, e.g., translation in the case of number
recognition.

The mechanism is fast and can fit into any place that has a feature map in a CNN. Stacking
many such modules together allows the network to learn more abstract transformations,
while applying many copies in parallel enables the network to attend to different objects.

Channel Attention

[HSS18] proposed an architectural unit named the “Squeeze-and-Excitation” (SE) block
which recalibrates the attention paid to each channel based on the interdependence between
channels.

Figure 12 shows the architecture of an SE block. Let U ∈ RH×W×C be output of some
previous transformation applied on X ∈ RH′×W ′×C′

. For example, the transformation may
be a sequence of convolution operations, and U may be a feature map. An SE block takes
U as the input, performs a squeeze operation and an excitation operation on it to produce
weights, and then re-weighs U in the channel dimensions using the weights.

Figure 12: A Squeeze-and-Excitation block [HSS18]

10

The squeeze operation, Fsq, aims to aggregate information within a channel. [HSS18]
maps U to z ∈ RC , with the c-th component of z simply computed as the average of
the H × W values in channel c of U. The excitation operation, Fex, is implemented as
a fully-connected feedforward layer with the ReLU function as the non-linearity, and then
another fully-connected feedforward layer followed by the sigmoid function. It computes
s = Fex(z) = σ(W2r(W1z)), where σ is the sigmoid function, r the ReLU function, and
W1 and W2 are matrices with appropriate dimensions so that s ∈ RC . The aim is to let the
model learn which channel features are more important than others given the input feature
map. Finally, the Fscale function scales all H ×W values in channel c of U by sc, and the
resulting recalibrated matrix is the output.

Conclusion

Attention mechanisms in neural networks have brought about significant improvement in
prediction accuracy, and attention in neural networks is still an active research area. There
are many attention mechanisms other than the ones mentioned in this essay. For exam-
ple, mixed attention combines spatial and channel attention mechanisms, hard attention in
computer vision completely ignores parts of the input stochastically, and the introspective
attention mechanism attends to a neural network’s internal state and does both selective
reading and selective writing to the state [Gra]. The mechanisms provide yet another per-
spective from which we can build deep neural networks and understand the outputs. With
greater expressive power and more flexibility, the models are likely to learn faster and per-
form better.

11

References

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[CvMG+14] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation, 2014.

[FRC10] Simone Frintrop, Erich Rome, and Henrik I Christensen. Computational visual
attention systems and their cognitive foundations: A survey. ACM Transac-
tions on Applied Perception (TAP), 7(1):1–39, 2010.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Adaptive
computation and machine learning. Cambridge, Massachusetts, 2016.

[Gra] Alex Graves. Deep learning 7. attention and memory in deep
learning. https://www.youtube.com/watch?v=Q57rzaHHO0k&list=PLBnE
s0gxis i0bM1xo BTEAAeZSYS9FN0&index=4.

[HSS18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
7132–7141, 2018.

[JSZ+15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. Advances in neural information processing systems, 28:2017–2025,
2015.

[LBH15] Y. LeCun, Y. Bengio, and G Hinton. Deep learning. Nature, 521:436–444,
2015.

[LWL+17] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E
Alsaadi. A survey of deep neural network architectures and their applications.
Neurocomputing, 234:11–26, 2017.

[PWLK18] Jongchan Park, Sanghyun Woo, Joon-Young Lee, and In So Kweon. Bam:
Bottleneck attention module. arXiv preprint arXiv:1807.06514, 2018.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages 5998–6008,
2017.

[WJQ+17] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang,
Xiaogang Wang, and Xiaoou Tang. Residual attention network for image classi-
fication. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3156–3164, 2017.

[WPLK18] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam:
Convolutional block attention module. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 3–19, 2018.

12

