
The RSA Algorithm

Amanda

September 29, 2020

Contents

Introduction 1

The Algorithm and the Underlying Mathematics 1
The Public Key Cryptosystem . 1
The RSA Algorithm . 1
The Mathematics in Encryption and Decryption 2

Security 3
The RSA Problem and the Factoring Problem 3
Security Level Based on the Factoring Problem 4

Implementation and Performance 4
Choosing p and q . 4
Choosing d and e . 4
Exponentiation . 5

Application 5
Public-Key Encryption . 6
Digital Signature . 7

Attacks 8
Forward Search Attack . 8
Common Modulus Attack . 8
Timing Attack . 8
Bellcore Attack . 8
Solving the Factoring Problem with a Quantum Computer 9

Conclusion 9

References 10

Introduction

The Rivest-Shamir-Adleman (RSA) Algorithm, published in 1977, is named
after its creators, Ron Rivest, Adi Shamir, and Leonard Adleman. It is the
first implementation of the public key cryptosystem and is still used in in-
transit encryption and digital signatures today [Aum17]. In this essay, I will
first discuss the mathematics behind the algorithm, its security based on the
factoring problem, and its implementation. This will be followed by how the
algorithm is augmented to meet the security goals in practice, and some attacks
against RSA-based cryptosystems.

The Algorithm and the Underlying Mathematics

The Public Key Cryptosystem

The public key cryptosystem invented by Diffie and Hellman describes an
encryption procedure E as a function. The domain and the codomain of E are
the same set M , where M is a finite set of values that a message can take. The
decryption procedure D is the inverse of E. Each procedure has a particular
key associated with it. For m ∈ M , it should be efficient to compute both
E(m) and D(E(m)) = m, but infeasible to deduce D or m from E and E(m)
alone [DH76].

Such a function E is called a “trapdoor one-way permutation” [RSA78]. E is
a permutation because it is invertible and hence bijective, and its codomain is
the same as its domain [HO00]. E is one-way due to the difficulty of computing
m from E(m) even when E is known. Nevertheless, the computation becomes
feasible if the “trapdoor information” which reveals D is known [DH76].

The RSA Algorithm

The RSA algorithm is proposed in [RSA78]. It works on numbers in Zn, using
modular arithmetic with n as the modulus, satisfying

n = p · q (1)

where p and q are two distinct large prime numbers chosen randomly. Zn
corresponds to the set M described above.
Let e and d be positive integers less than n such that

e · d ≡ 1 (mod ((p− 1)(q − 1))) (2)

(e, n) is the encryption key, and (d, n) is the decryption key. d is also called the
secret exponent [Aum17] as it is the trapdoor information that makes decryption
efficient.
The encryption procedure E is implemented by

c = E(m) = me mod n (3)

1

The decryption procedure D is implemented by

m = D(c) = cd mod n (4)

where m ∈ Zn denotes the message in plaintext and c denotes the corresponding
ciphertext.

The Mathematics in Encryption and Decryption

The following proof that D is the inverse of E is due to a lecture by Dijk [DL].

Euler’s totient function Euler’s totient function, φ, takes a positive in-
teger n and returns the number of positive integers in {1, 2, ..., n− 1} which are
co-prime with n.

Euler’s theorem If gcd(n, k) = 1, then kφ(n) ≡ 1 (mod n). (gcd(n, k) is
the greatest common divisor of n and k.)

Fermat’s little theorem If p is prime, and k ∈ {1, 2, ..., p − 1}, then
kp−1 ≡ 1 (mod n).

Proof that D is the inverse of E Dijk proves Euler’s theorem and uses
it to prove Fermat’s little theorem in [DL]. He then uses Fermat’s little theorem
in the following proof.

D(E(m)) = (me)d mod n = med mod n

E(D(m)) = (md)e mod n = med mod n

by Equations 3 and 4.

∃r ∈ Z · ed = 1 + r(p− 1)(q − 1)

by Equation 2. Hence,

med = m1+r(p−1)(q−1) = m ·mr(p−1)(q−1)

Suppose m 6≡ 0 (mod p), then by Fermat’s little theorem,

mp−1 ≡ 1 (mod p)

med = m ·mr(p−1)(q−1) = m · (mp−1)r(q−1) ≡ m · 1 ≡ m (mod p)

Now suppose m ≡ 0 (mod p), then

med ≡ 0 ≡ m (mod p)

Therefore,
∀m ∈ Zn ·med ≡ m (mod p)

2

By symmetry,
∀m ∈ Zn ·med ≡ m (mod q)

This implies that
p | (med −m) ∧ q | (med −m)

but p and q are distinct primes, and n = p · q, so

n | (med −m)

Therefore,
med ≡ m (mod n)

And since m ∈ Zn,
m = med mod n

Hence, D(E(m)) = E(D(m)) = m, so the decryption of an encrypted message
will work as expected. E is a bijective function on Zn, so it is a permutation as
required in the public key cryptosystem scheme. The next section explains why
it is also one-way.

Security

The RSA Problem and the Factoring Problem

The RSA problem (RSAP) is defined in [MKvOV18] as “given a positive
integer n that is the product of two distinct odd primes p and q, a positive integer
e such that gcd(e, (p−1)(q−1)) = 1, and an integer c, find an integer m such that
me ≡ c (mod n).” The given information in RSAP is the information exposed
to the eavesdropper by the RSA algorithm, and solving RSAP is equivalent to
finding the plaintext. Hence, the hardness of RSAP underlies the security of
the RSA algorithm, as the security goal is to protect the confidentiality of m
under the assumption that the private key is not compromised.

Rivest et al. conjecture that RSAP is computationally intractable [RSA78]
(except a few special cases such as c = 0). It is closely associated with the
well-studied factoring problem [Aum17], and both are widely believed to be
equivalent [AM09,MKvOV18], but their equivalence has not been proven yet.

The factoring problem is defined in [Aum17] as “finding the prime numbers p
and q given a large number n = p · q”. No polynomial-time algorithm has been
found to solve the factoring problem, and the decision version of the problem
is provably in NP, but it is believed to be easier than NP-complete problems
although that has not been proven [GBGL08].

3

Security Level Based on the Factoring Problem

The factoring problem serves as the hardness assumption in the proof of RSA’s
security. [RSA78] proves that a few methods of breaking the RSA algorithm are
at least as hard as the factoring problem by showing that the success of each
attack implies easy factoring of n. If the factoring problem is hard, and the
RSAP is equivalent to the factoring problem, then the RSA algorithm is hard
to break, and the encryption procedure E is a one-way permutation.

Consequently, the security level of the RSA algorithm depends on the cur-
rently known fastest attack that solves the factoring problem. The asymptoti-
cally fastest method of factoring a number, n, is the general number field sieve,
whose heuristic complexity is roughly exp(1.91 × N1/3 × (log2N)2/3), where
N = log2 n [Aum17]. The National Institute of Standards and Technology
(NIST) suggests that the modulus n in RSA be at least 3072 bits long for the
algorithm to reach the security strength of 128 bits, comparable with that of
the commonly used block cipher AES-128 [BBB+06].

Implementation and Performance

Choosing p and q

Supposing we want n = p · q to be 3072 bits, then p and q should be around
1536 bits in length. Their sizes should differ by a few digits so that both are
sufficiently large and a simple attack by searching prime factors around

√
n is

unlikely to succeed [MKvOV18].

A number with 1536 binary digits has approximately log10 21536 ≈ 462 deci-
mal digits. Using the method proposed in [RSA78], we can obtain a 462-digit
prime number by generating 462-digit odd numbers randomly until we find
a prime. From the prime number theorem [Jam03], there are approximately
x/ lnx primes less than or equal to x, so about (x/2)/(x/ lnx) = (lnx)/2 ran-
dom odd numbers need to be generated before a prime is found. For x = 10462,
lnx/2 ≈ 532. (Since we are only generating 462-digit prime numbers rather than
any positive prime numbers less than x, this approximation assumes uniform
distribution of prime numbers along the number axis.) The candidate numbers
can be tested for primality using an efficient probablistic algorithm, such as the
Solovay-Strassen primality test [SS77].

Choosing d and e

Either of d and e can be chosen first, and the other can be determined from
the chosen value. Suppose we choose d first. The value we choose must be
co-prime with (p− 1)(q − 1) for Equation 2 to hold for some e, and this can be
easily achieved by choosing any prime number greater than max(p, q) [RSA78],
as any prime factors of (p − 1) or (q − 1) must be less than max(p, q). The

4

range of possible values of d must be large enough to render brute force attack
infeasible [RSA78].

After choosing d, e can be computed using the extended Euclidean algorithm
[Aum17]. Given inputs x and y, the extended Euclidean algorithm finds s and t
such that s·x+t·y = gcd(x, y). Since (p−1)(q−1) and d are relatively prime, we
can use the algorithm to find integers s and e such that s·(p−1)(q−1)+e·d = 1.
This implies that e · d ≡ 1 (mod ((p− 1)(q − 1))), as required.

This algorithm takes O(log n) time to find e. Alternatively, it is common
to fix e at 216 + 1 = 65537, which allows fast encryption with the square-and-
multiply method due to its low Hamming weight. Moreover, the proportion of
messages that encrypt to itself is negligible when e is small [MKvOV18].

Exponentiation

Square-and-Multiply

The encryption and the decryption in RSA are exponentiation operations
modulo n. One family of fast exponentiation algorithms is square-and-multiply
[Aum17], which computes xy mod n using O(log y) multiplication-like opera-
tions on numbers with the same size as n.

The Chinese Remaider Theorem

The Chinese remainder theorem is also commonly used to further accelerate
exponentiation in the decryption procedure. It cannot be used in the encryption
procedure as the secret factors are needed. To find xd mod n using the theorem,
where n = p · q, we have

xd mod n = ((xd mod p) · q · (q−1 mod p) + (xd mod q) · p · (p−1 mod q)) mod n
(5)

This allows exponentiation under the much smaller moduli p and q, so the
numbers that we need to square and multiply are smaller. The multiplicative
inverse of p modulo q and that of q modulo p exist because gcd(p, q) = 1 for
distinct primes p and q, and they can be computed using the extended Euclidean
algorithm. Moreover, q · (q−1 mod p) and p · (p−1 mod q) can be pre-computed
to save more time [Aum17].

Application

[RSA78] aims to incorporate two properties of the paper mail system into an
electronic mail system through the RSA algorithm. The first property is that
“messages are private”, which is a criterion for the security of a cipher. The
second property is that “messages can be signed”, which implies the use of digital

5

signatures. Both properties assume that the attacker has not compromised the
private key.

Despite the algorithms that speed up the exponentiation in RSA, RSA is
still slower than symmetric-key ciphers like the Advanced Encryption Standard
(AES). Hence, RSA is typically used to transmit the symmetric keys of other
ciphers and other small data like signatures [MKvOV18]. However, direct use
of the RSA algorithm for these purposes is likely to fail the respective security
goals, and extra features like randomness need to be added to make the entire
algorithm more secure. The rest of this section describes some reasons for
the insecurity and outlines stronger algorithms based on RSA as explained in
[Aum17].

Public-Key Encryption

Textbook RSA Encryption

A secure encryption algorithm needs to produce ciphertexts with the proper-
ties of indistinguishability and non-malleability. The textbook RSA encryption
simply takes the plaintext, m, and gives the ciphertext, c = E(m). This algo-
rithm is deterministic, as the same plaintext will give the same ciphertext every
time it is encrypted with the same encryption key.

To test for indistinguishability, suppose the attacker picks two plaintexts and
receives a ciphertext that corresponds to either of the two with probability 1/2.
The ciphertext is indistinguishable from a random string of bits if the attacker
cannot tell with probability better than 1/2 which plaintext was encrypted.
Therefore, indistinguishability is impossible in the chosen-plaintext attackers
(CPA) model, where the attacker can encrypt the plaintexts and compare the
output with the given ciphertext.

Moreover, the naive encryption algorithm also yields malleable ciphertext.
Suppose E(m1) = c1, and E(m2) = c2. Without knowingm1 orm2, the attacker
can compute c3 = c1 ·c2 mod n = me

1 ·me
2 mod n = (m1 ·m2)e mod n, and know

the relationship that m3 = D(c3) = m1 · m2 mod n, thereby creating a valid
ciphertext and deducing some information about its corresponding plaintext.

Optimal Asymmetric Encryption Padding

The Optimal Asymmetric Encryption Padding (OAEP) combined with RSA
gives a stronger cipher, RSA-OAEP. The padding scheme uses a pseudorandom
number generator (PRNG) to generate a seed, pads the plaintext according
to some fixed algorithm, and mixes them using two unkeyed hash functions.
The result, together with some intermediate values, are catenated to give the
bit string P which will be encrypted by the RSA algorithm to give the final
ciphertext S. After decrypting S, one can recover the seed and the plaintext

6

using the information in P . Without knowing the seed, the attacker is unable
to tell which of the two plaintexts was encrypted in the test for indistinguisha-
bility. Since two plaintexts are almost certainly encrypted with different seeds
and secure hash functions should be non-linear, it is hard for the attacker to
create a ciphertext from existing ciphertexts and deduce something about the
corresponding plaintext. Ciphertexts resulting from RSA-OAEP are therefore
indistinguishable and non-malleable.

Digital Signature

Textbook RSA Signatures

A secure digital signature needs to satisfy unforgeability, which means that an
attacker cannot make up a valid message-tag pair without knowing the private
key. In the textbook RSA signature scheme, the owner of the private key signs
the message m by creating c = D(m), and everyone can verify the signature
by computing E(c) and checking that E(c) = m. However, this scheme allows
trivial forgeries. The message-tag pairs (0, 0), (1, 1) and (n−1, n−1) are always
valid, independent of the private key.

This signature scheme is also weak against the blinding attack. Suppose the
attacker wants the owner of the private key d to sign a message m unknowingly.
The attacker may use some value k that is co-prime with n to create another
message m ·ke mod n, which the private key owner will sign consciously. Having
obtained the signature s = md · ked mod n = md · k mod n, the attacker can
compute md mod n = s · k−1 mod n, which is the signature of m.

Probablistic Signature Scheme

The Probablistic Signature Scheme (PSS), like OAEP, also uses a PRNG and
two unkeyed hash functions. It computes the hash value of the message m
using the first hash function, pads this hash value with some ‘0’s and a number
R generated by the PRNG, and further mixes the value with extra padding and
R using both hash functions. The output P is eventually passed into the RSA
decryption procedure to generate the final signature S. To check the validity of
the signature, one can compute P1 by following the steps of PSS before the use
of RSA, and P2 = E(S). The signature is verified if P1 = P2. (If the signature
is valid, R can be recovered from E(S) and used to compute P1.)

Full Domain Hash Signatures

The Full Domain Hash (FDH) signature scheme simply computes the hash
value of a message under a hash function, and signs that value using the RSA
decryption procedure. It is almost as secure as PSS, but weaker against attacks
like the Bellcore attack which target its deterministic nature.

7

Attacks

Forward Search Attack

If the message space is small, the attacker can find the message m correspond-
ing to a ciphertext c by trying to encrypt possible messages in the message space
until the ciphertext equals c. To avoid such attacks, the message can be salted
with padding as in OAEP and PSS, so a brute-force search in the message space
becomes infeasible [MKvOV18].

Common Modulus Attack

If two entities Alice and Bob have the same n for their own procedures, with
key pairs (eA, dA) and (eB , dB), both of them will know p and q. (Even if Alice
does not know p and q directly, she can compute them from n and (eA, dA), and
so can Bob from his key pair [Aum17].) They can then easily compute the other
entity’s private key from the corresponding public key. Hence, it is crucial for
different entities to have different n values [MKvOV18].

Timing Attack

The square-and-multiply algorithm makes it possible to recover the secret
exponent d using a timing attack. The time taken by the algorithm is heavily
dependent on each bit of d, as a branch to multiplication takes place exactly
when the bit examined in that iteration is 1. By observing the timing, or the
power consumption in a hardware implementation of the algorithm, the attacker
may deduce d [Aum17].

Bellcore Attack

The Bellcore attack works on deterministic RSA implementations which use
the Chinese remainder theorem. The attacker uses fault injection, forcing part
of the algorithm to misbehave, and uses the faulty result to deduce the factors
of n. For example, suppose the calculation of xd mod p in Equation 5 is faulty.
For convenience, let

yp := xd mod p

yq := xd mod q

y := xd mod n = (yp · q · (q−1 mod p) + yq · p · (p−1 mod q)) mod n

y′p := the faulty result of xd mod p

y′ := (y′p · q · (q−1 mod p) + yq · p · (p−1 mod q)) mod n

Then
y − y′ = (yp − y′p) · q · (q−1 mod p)

8

So q is a factor of y − y′. y and y′ are accessible to the attacker as the output
of the decryption procedure in the chosen-ciphertext attacker (CCA) model.
Hence, the attacker can find q = gcd(n, y − y′), thereby factoring n [Aum17].

Solving the Factoring Problem with a Quantum Computer

If quantum computing becomes a reality, the RSA algorithm will no longer
be secure. The factoring problem takes O(2N) time when solved by classi-
cal computers, where N = log2 n is the size of the modulus n. Shor’s al-
gorithm which works on quantum computers solves the factoring problem in
O(n2(log n)(log log n)) time, which is an exponential speed-up. If the hardness
assumption underlying RSA is a problem that can be solved efficiently, then
RSA can be broken as efficiently. Nevertheless, whether commercial-scale quan-
tum computers can ever be manufactured is still a matter of debate [Aum17].

Conclusion

The RSA algorithm has stood the test of time since its publication, and
cryptosystems based on it have proven reliable when implemented properly.
Over the years, secure and more efficient public-key cryptography algorithms
like the elliptic curve cryptography have emerged [Aum17] and may gradually
take the lead, but the RSA algorithm remains a milestone in the history of
cryptography.

9

References

[AM09] Divesh Aggarwal and Ueli Maurer. Breaking rsa generically is
equivalent to factoring. In Antoine Joux, editor, Advances in Cryp-
tology - EUROCRYPT 2009, pages 36–53. Springer Berlin Heidel-
berg, 2009.

[Aum17] Jean-Philippe Aumasson. Serious Cryptography. William Pollock,
1st edition, 2017.

[BBB+06] Elaine Barker, William Barker, William Burr, William Polk, Miles
Smid, et al. Recommendation for key management: Part 1: Gen-
eral. National Institute of Standards and Technology, Technology
Administration, 2006.

[DH76] W Diffie and M Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[DL] Marten van Dijk and Tom Leighton. 6.042j mathematics for com-
puter science. fall 2010. https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-042j-mathematics-for-
computer-science-fall-2010/video-lectures/lecture-5-number-
theory-ii/.

[GBGL08] Timothy Gowers, June Barrow-Green, and Imre Leader. The
Princeton companion to mathematics [electronic resource]. Prince-
ton University Press, 2008.

[HO00] Cordelia Hall and John O’Donnell. Discrete mathematics using a
computer. Springer, 2000.

[Jam03] G. J. O Jameson. The prime number theorem [electronic resource].
London Mathematical Society student texts ; 53. 2003.

[MKvOV18] Alfred J. Menezes, Jonathan Katz, Paul C. van Oorschot, and
Scott A. Vanstone. Handbook of Applied Cryptography [electronic
resource]. Taylor & Francis Group, first edition, 2018.

[RSA78] R Rivest, A Shamir, and L Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[SS77] R. Solovay and V. Strassen. A fast monte-carlo test for primality.
SIAM Journal on Computing, 6(1):84–85, 1977.

10

