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Abstract

Recent development in machine learning has led to models with state-of-the-art performance

in areas like computer vision. In particular, there is growing interest in using deep neural

networks for safety-critical applications. The robustness of a neural network model, which

measures the model’s capability to produce the correct output despite small perturbations in

the input, is crucial for such applications.

There are various definitions of robustness. In this project, we use an existing tool called

DeepGame that bounds the pointwise robustness of neural networks. Given a correctly classified

input, the pointwise robustness measures how much we need to perturb the input for the model

to misclassify it.

DeepGame has been used on pure convolutional neural networks (CNNs). Other neural

network architectures, such as CNNs with attention mechanisms, have worked well in image

classification tasks. In this project, we select two kinds of attention mechanisms from existing

literature and implement them, train CNNs with and without the attention mechanisms

for image classification, and use DeepGame to bound the robustness of the resulting models.

Moreover, we improve DeepGame for greater efficiency and functionality before running the

experiments. Through the experiments, we demonstrate the use of DeepGame on the attention

models and compare its outputs for different models.
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Chapter 1

Introduction

1.1 Motivation

Machine learning has achieved significant successes in solving artificial intelligence prob-

lems in recent years [HKWT18]. Deep learning, a subfield of machine learning, has attained

state-of-the-art performance in complex tasks such as computer vision and natural language

processing [GBC16], using models known as artificial neural networks. The improvement

in deep learning is largely attributed to greater dataset sizes and computation power, al-

lowing much larger neural networks to learn more complex information in a given amount

of time [GBC16]. Moreover, innovations in model architectures, such as the introduction

of attention mechanisms to build attention models, have further enhanced the performance

of neural networks [KSZQ20]. Inspired by the concept of attention in psychology, attention

mechanisms in deep learning aim to disregard irrelevant features and concentrate computation

power on more relevant ones. In image classification tasks, attention mechanisms can enhance

the classification accuracy of neural networks [BZV+19,WPLK18], and they allow the use of

lower-resolution inputs without significantly compromising the performance [JSZ+15].

The development in deep learning has sparked interest in industrial applications of neural

networks, and some applications, like self-driving cars and medical diagnosis, are safety-
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critical [GLB+18]. However, the large and complex models can represent highly non-linear and

unstable mappings from the inputs to the outputs. Indeed, in the context of object recognition

tasks, [SZS+13] found that by applying a slight perturbation to a correctly classified input

image, we can cause a state-of-the-art neural network to misclassify the resulting image. We

call the resulting image an “adversarial example”, and we say a model is “robust” if it can

continue to classify an input correctly despite such perturbations to the input. Considering

such vulnerabilities, it is important to evaluate and improve the models’ robustness towards

adversarial examples, thereby providing better safety guarantees that are crucial to safety-

critical applications.

There are various properties quantifying the robustness of a neural network, and different

verification techniques exist to compute provable guarantees on the properties [HKR+20]. In

this project, we focus on a pointwise robustness property called the “maximum safe radius”

(MSR). Intuitively, the MSR of a model for a given input is the distance (with respect to

a given metric) from the input to the closest adversarial example. We bound the MSR via

the game-based verification algorithms proposed in [WWR+18]. The algorithms reduce the

problem of finding the MSR to a search problem with a discrete state space. In the search

problem, the objective is to find an adversarial example on a grid that is representative of

the entire input space. Two players controlling different parts of the search cooperate to

find a solution. This problem is intractable, and the algorithms can be interrupted to yield

bounds on the solution, i.e., they are anytime algorithms. Monte Carlo tree search is the

algorithm used to look for an upper bound on the MSR, and admissible A* search to look for

a lower bound. [WWR+18] implemented the algorithms in a software tool named DeepGame

and used the tool to conduct experiments on convolutional neural networks (CNNs) for image

classification problems.

This project is based on [WWR+18], as we improve the efficiency of the tool, adapt it

to our project, and assess its suitability for neural networks with attention mechanisms.
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However, some of the theoretical results, such as the validity of the lower bounds, require

a parameter that depends on the Lipschitz constant of the neural network. The Lipschitz

constant bounds how fast the neural network’s output changes with respect to changes in

the input [CMN19]. There exists literature on finding good Lipschitz constants of feed-

forward neural networks [FRH+19], but there is currently no such well-developed algorithm

for neural networks with attention mechanisms. Hence, we make prior assumptions about

some parameter values in our analysis.

1.2 Contributions

We categorize our contributions into two parts: programming and experimenting.

In the programming part,

• we adapt DeepGame from [WWR+18], which uses the tensorflow-gpu 1.4.0 library, to use

tensorflow-gpu 2.4.1 instead, as it is easier to find well-maintained documentation and

compatible libraries for the latter;

• we enhance the performance of DeepGame by parallelizing multiple runs of experiments,

and by pruning away nodes with visited states in the A* search. There is empirical

evidence that the optimizations improved the efficiency of the search algorithms;

• we add code to DeepGame to facilitate data collection, saving data such as the best

bounds obtained, the number of iterations of the searches, and the difference between

the closest adversarial example and the original input; we also write code to extract

the information from the files containing the data, and collate the information for data

analysis;

• we introduce two simple attention mechanisms inspired by [BZV+19] and [WPLK18]

and implement them in Python;
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• we build and train neural networks, with and without the attention mechanisms, on

the German Traffic Sign Recognition Dataset (GTSRB)1 from [SSSI11]. The resulting

neural networks are the models we use in the experiments.

In the experimenting part,

• we use the improved DeepGame to evaluate the robustness of the models, demonstrating

its use on attention models; we also compare the performance across different models,

analyzing the best bounds obtained, the adversarial examples found and the features

extracted;

• we then vary parameters in DeepGame to investigate how they influence the performance

of the tool.

The improved DeepGame code is available at the anonymized repository, https://anonym

ous.4open.science/r/DeepGame-Attention. The changes are visible in its difference from

the original code at https://github.com/TrustAI/DeepGame/tree/6a3f0d1a48a66a3c1b4

8be33c09c84ca368e2f1a.

We demonstrated that DeepGame can find adversarial examples for attention models effec-

tively, and its performance on attention models is comparable to that on pure CNNs in terms

of bounding the MSR. We also found evidence suggesting that the attention models we built

are not necessarily more robust than pure CNNs at the image classification task.

1.3 Overview of the report

We now summarize the rest of this report.

• Chapter 2 gives an overview of the ideas behind the algorithms in DeepGame, and de-

scribes the two attention mechanisms we extract from existing papers;

1We obtained the dataset by email from the authors of [SSSI11].
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• Chapter 3 describes the main improvements we made to DeepGame;

• Chapter 4 describes the design of our experiments, including the choices of parameters

and variables;

• Chapter 5 presents and analyzes the results from the experiments;

• Chapter 6 concludes the report;

• Chapter 7 reflects upon the project and suggests areas that future research may explore.
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Chapter 2

Related Work

2.1 Game-based verification of deep neural networks

This section provides an overview of the definitions, theorems and algorithms that are

necessary for understanding how DeepGame bounds the minimum safe radius (MSR). The

core contents and notations in this section are from [WWR+18], while we provide additional

descriptions and diagrams for easier comprehension. Further details and mathematical proofs

are available in [WWR+18].

2.1.1 Preliminary definitions

Consider a neural network N for a classification task. Let C be the set of all classes, and

P0 be the set of dimensions of an input so |P0| is the number of dimensions. For example, in

an image classification task, the input α is an image with width w, height h and ch channels,

so it has |P0| = w ·h · ch dimensions, as shown in Figure 2.1. Moreover, we say that the image

input has w · h pixels, each associated with ch dimensions.

For an input α and a class c ∈ C, let N(α, c) denote N ’s predicted probability that α

belongs to c. Let N(α) be the class which N classifies α into. Let α[i] denote the value of

the i-th dimension of α. Without loss of generality, we assume that each input dimension is
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Figure 2.1: An illustration of a dimension and a pixel of an image input. The input has the
shape (w, h, ch) where w = h = ch = 3.

normalized to the interval [0, 1], so we can denote the input space by D where D = [0, 1]|P0|.

For a vector v = (v1, ..., vn), let ‖v‖k denote the length of v measured under the Lk distance

function. That is, ‖v‖k = (
∑n

i=1 |vi|k)1/k. We consider k ≥ 1.

We only consider Lipschitz networks, as defined below. From [RHK18,SZS+13], given that

the inputs are bounded, most common types of neural network layers are Lipschitz continuous,

including the layers in CNNs and our attention mechanisms. Hence, our models are Lipschitz

networks.

Definition 1 A neural network N is a Lipschitz network with respect to a distance function

Lk if there exists a constant ~c > 0 for every class c ∈ C, such that for all inputs α, α′ ∈ D,

we have

|N(α′, c)−N(α, c)| ≤ ~c · ‖α′ − α‖k (2.1)

where ~c is a Lipschitz constant for the class c.

Equivalently, when α 6= α′, ~c ≥ |N(α′,c)−N(α,c)|
‖α′−α‖k , so ~c is like an upper bound on the rate of

change of the confidence that the input belongs to c, with respect to the change of the input

measured by Lk.
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The “point” in the “pointwise robustness” refers to a fixed input α. It is therefore useful

to define the neighbourhood of a given input.

Definition 2 Given an input α, a distance function Lk, and a distance d, the d-neighbourhood

of α with respect to Lk is

η(α,Lk, d) = {α′ | ‖α′ − α‖k ≤ d}. (2.2)

Hence, η(α,Lk, d) is the set of inputs within the distance d of α, with the distance measured

under Lk. Figure 2.2 demonstrates the concept for the special case where α has two dimensions

and k = 2.

Figure 2.2: The green region shows the d-neighbourhood of α with respect to L2, which we
denote by η(α,L2, d). The inputs have two dimensions, labelled x and y respectively.

We also introduce the notation dε to denote d+ ε for any arbitrarily small ε > 0, so dε is a

number greater than d. This is used in our definition of the maximum safe radius problem.

Now we describe a systematic way of manipulating the given input, which is essential in

our search for adversarial examples. Let τ > 0 be a real number called the manipulation
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magnitude, X ⊆ P0 be a subset of dimensions, ψ : P0 → Z be an instruction function1.

Definition 3 Given τ > 0, X ⊆ P0, and ψ : P0 → Z, the input manipulation operation

δτ,X,ψ : D → D is defined by

δτ,X,ψ(α[i]) =


α[i] + ψ(i) · τ, if i ∈ X

α[i], otherwise.

(2.3)

where δτ,X,ψ(α[i]) means the value of the i-th dimension of δτ,X,ψ(α). For bounded domains

such as D = [0, 1]|P0|, we restrict the manipulation result to be within the domain.

We have ψ mapping a dimension to the number of times we manipulate the dimension by τ

or −τ , and X restricting the dimensions in which the manipulations occur. The manipulation

in each dimension by δτ,X,ψ is hence a multiple of τ . This gives rise to the concept of atomic

manipulations.

Definition 4 Given τ > 0, X ⊆ P0, define ∆(X) as the set of atomic input manipulations,

each of the form δτ,X1,ψ1, such that X1 ⊆ X, |X1| = 1 and ψ1(i) ∈ {−1,+1} for all dimensions

i.

Each input manipulation in ∆(X) is atomic because it manipulates a single dimension by τ in

either direction. We can implement any input manipulation δτ,X,ψ by a sequence of (possibly

repeated) atomic manipulations from ∆(X), and we use atomic manipulations in our search

algorithms. The choice of X is related to the idea of features, which we will define next.

Given an input α ∈ D, we associate a feature with a set of dimensions. We use feature

extraction methods such that the set of all features corresponds to a partition of the set of

all dimensions P0, and the result of the feature extraction may depend on the input. In the

1In [WWR+18], the codomain of ψ is N instead of Z, but we believe this is an error, as the subsequent
definition of atomic input manipulations has the instruction function mapping a dimension to a negative
number.
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game-based algorithms, one player’s moves involve choosing features, while the other player

chooses atomic manipulations constrained to the chosen features.

Definition 5 Let λ denote a feature, and Pλ ⊆ P0 the dimensions represented by λ for a

given input α. A feature extraction function Λ maps an input α to a set of features, such that

{Pλ | λ ∈ Λ(α)} is a partition of P0.

For the discussion of the algorithms, it is convenient to consider adversarial examples within

a given distance of the fixed input.

Definition 6 Given an input α ∈ D, a distance function Lk, a distance d, and a class c ∈ C

such that c 6= N(α), we define

advk,d(α, c) = {α′ | α′ ∈ η(α,Lk, d) ∧N(α′) = c 6= N(α)}, (2.4)

advk,d(α) =
⋃

c∈C,c6=N(α)

advk,d(α, c). (2.5)

Equivalently, advk,d(α, c) is the set of adversarial examples within distance d from α classified

into c, while advk,d(α) does not target a specific class c. The results below are for advk,d(α, c),

but similar results hold for advk,d(α).

2.1.2 Maximum safe radius problem

We now define the maximum safe radius (MSR) problem and the finite maximum safe

radius (FMSR) problem, and state the relationships between their solutions.

Definition 7 Given a distance function Lk, a distance d, an original input α ∈ D, and a

class c 6= N(α), the maximum safe radius (MSR) problem is the problem of finding the MSR,

as defined by

MSR(k, d, α, c) = min
α′∈D
{‖α− α′‖k | α′ ∈ advk,d(α, c)} (2.6)

with MSR(k, d, α, c) = dε if advk,d(α, c) = ∅.
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Hence, MSR(k, d, α, c) is the minimum distance from α to an adversarial example within dis-

tance d, or dε if no such adversarial example exists. There is no adversarial example at a

distance less than MSR(k, d, α, c) from α, so MSR(k, d, α, c) is like an absolute safe radius from

α, as shown in Figure 2.3.

Figure 2.3: A figure showing the maximum safe radius (MSR) of an input α. The green region
is η(α,L2, d), and the red regions represent sets of adversarial examples. The inputs have two
dimensions, labelled x and y respectively.

Since the input space D can have an infinite cardinality, and we hope to use finite opti-

mization algorithms to approximate MSR with provable guarantees, we discretize the MSR

problem.

Definition 8 Given a manipulation magnitude τ ∈ (0, 1] and other parameters as in the

definition of the MSR problem, let Ψ denote the set of all possible instruction functions. The

finite maximum safe radius (FMSR) problem is to find

FMSR(τ, k, d, α, c) = min
Λ′⊆Λ(α)

min
X⊆

⋃
λ∈Λ′ Pλ

min
ψ∈Ψ
{‖α− δτ,X,ψ(α)‖k | δτ,X,ψ(α) ∈ advk,d(α, c)} (2.7)

and we let FMSR(τ, k, d, α, c) = dε if advk,d(α, c) = ∅.

Intuitively, the FMSR problem replaces the continuous variable α′ ∈ D with the discrete

variables Λ′, X and ψ, choosing a set of features, and then a set of dimensions from the chosen
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features and an input manipulation in those dimensions to obtain an adversarial example. As

a result, it considers only inputs that are obtained from α via manipulations by multiples of

τ .

Since the closest adversarial example solving the FMSR problem is a candidate solution to

the MSR problem, it follows that MSR(k, d, α, c) ≤ FMSR(τ, k, d, α, c). To derive a lower bound

on MSR(k, d, α, c), however, we need to fulfil more conditions.

Definition 9 An input α′ ∈ η(α,Lk, d) is called a τ -grid input if for all dimensions i ∈ P0,

there exists an integer n ≥ 0 such that |α[i]− α′[i]| = n · τ . Let G(α, k, d) be the set of τ -grid

inputs in η(α,Lk, d).

The set of τ -grid inputs is the set of inputs searched in the FMSR problem, as shown in Figure

2.4.

Figure 2.4: A figure showing the finite maximum safe radius (FMSR) of an input α, with the
manipulation magnitude τ . The green region is η(α,L2, d), and the red regions represent sets
of adversarial examples. The grey dots show the τ -grid and the blue “x”s show the adversarial
examples considered in the FMSR problem. The inputs have two dimensions, labelled x and
y respectively.

Definition 10 Suppose we are considering adversarial examples of α. An input α1 ∈ η(α,Lk, d)

is a misclassification aggregator with respect to some β > 0 if, for all inputs α2 ∈ η(α1, Lk, β),

N(α2) 6= N(α) implies N(α1) 6= N(α).
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Equivalently, fixing a positive distance β, we call α1 a misclassification aggregator if the

correct classification of α1 implies the correct classification of any input within distance β of

α1. By “correct classification”, we mean the classification of the input into N(α).

Lemma 1 Let D(k, τ) = k
√
|P0| · τk. Then η(α,Lk, d) ⊆

⋃
α′∈G(α,k,d) η(α′, Lk,

1
2D(k, τ)).

This lemma states that by taking the union of the 1
2D(k, τ)-neighbourhoods of all τ -grid

inputs in η(α,Lk, d), we will include all inputs in η(α,Lk, d). Figure 2.5 illustrates the lemma

in the special case where k = 2 and the inputs have two dimensions.

Figure 2.5: A figure showing how the 1
2D(2, τ)-neighbourhoods of τ -grid points, represented

by the blue discs, can cover the entire 2-dimensional input space.

Lemma 2 Under the condition that all τ -grid inputs are misclassification aggregators with

respect to 1
2D(k, τ), we have MSR(k, d, α, c) ≥ FMSR(τ, k, d, α, c)− 1

2D(k, τ).

For an intuitive explanation of this lemma, assume for contradiction that MSR(k, d, α, c) is

strictly smaller than FMSR(τ, k, d, α, c) − 1
2D(k, τ). Let α′ be the adversarial example associ-

ated with MSR(k, d, α, c). By Lemma 1, the 1
2D(k, τ)-neighbourhoods of τ -grid inputs covers all

possible inputs in η(α,Lk, d), so α′ is in the 1
2D(k, τ)-neighbourhood of some τ -grid input α′′.

By our assumption, the distance between α′′ and α is strictly smaller than FMSR(τ, k, d, α, c).

However, by the condition that all τ -grid inputs are misclassification aggregators, α′′ is an
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adversarial example at a distance smaller than FMSR(τ, k, d, α, c) from α, which is a contra-

diction.

For the lower bound in Lemma 2 to hold, we just need to ensure that all τ -grid inputs are

misclassification aggregators. Given the neural network N , the input α, the function Lk, and

the distance d for the MSR and the FMSR problems, we can achieve the condition by making

τ small enough such that for all c ∈ C, for all α′ ∈ G(α, k, d),

D(k, τ) ≤ 2g(α′, N(α′))

maxc∈C,c6=N(α′)(~N(α′) + ~c)
(2.8)

where g(α′, c) = minc′∈C,c′ 6=c{N(α′, c) − N(α′, c′)}. This method uses Lipschitz constants of

N to bound the rate of change of N ’s outputs, and makes τ small enough so that the changes

in the outputs are insufficient to alter the classification near τ -grid inputs.

Therefore, given that τ satisfies Equation (2.8), we have FMSR(τ, k, d, α, c) − 1
2D(k, τ) ≤

MSR(k, d, α, c) ≤ FMSR(τ, k, d, α, c). Theoretically, the search algorithms we use for bounding

FMSR(τ, k, d, α, c) converge to the true value eventually, so we have the theoretical guarantee

that we can eventually compute both the upper and the lower bounds on MSR(k, d, α, c) proven

above. Nevertheless, the finite optimization problem is still intractable, as the number of

dimensions |P0| of the input is usually large and the state space G(α, k, d) has size exponential

in |P0|. In practice, we obtain the best bounds found under some time constraint, and that

is why the performance of the algorithms on different models is of interest.

2.1.3 Searching the game tree

Although [WWR+18] discusses algorithms bounding FMSR(τ, k, d, α, c), the implementation

in DeepGame does not target any specific class c. Hence, we introduce the game and the
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algorithms for FMSR(τ, k, d, α) instead, where

FMSR(τ, k, d, α) = min
c∈C

FMSR(τ, k, d, α, c). (2.9)

Let the two players be Player I and Player II. In the search, the two players alternate

their actions. Player I starts the game by choosing a feature, Player II then chooses an

atomic manipulation restricted to the chosen feature, and they repeat the two steps until

they reach a terminal node. The root node contains the initial input α. A node expansion

creates one child node for each valid action at the current node. A path from the root node

corresponds to the sequence of atomic manipulations along the path, and the node we reach

by traversing the path corresponds to the input obtained by the manipulations from α. A

terminal node corresponds to an input that is either in advk,d(α) or outside η(α,Lk, d), i.e.,

either an adversarial example or an input too far from α.

Monte Carlo tree search

For an upper bound on FMSR(τ, k, d, α), we use Monte Carlo tree search (MCTS), as shown

in Algorithm 1.

The termination condition could be a time constraint, a user interrupt, or the completion

of the search (which is unlikely in practice). The random simulation of moves in Line 7 does

not add any nodes to the search tree T , and we can perform a few independent simulations

and take the minimum cost. The exploration-exploitation ratio R determinines the trade-off

between exploration and exploitation. Specifically, to select a leaf node for expansion, we

traverse the current search tree from the root down to a leaf by a stochastic process, sampling

the next node we traverse to using the probability distribution defined below. Given a node

o, let no denote the number of times we back-propagated costs to o, and ro the sum of all

costs back-propagated to o. Let o be an internal node with the set Co of child nodes. For
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Algorithm 1 Monte Carlo tree search for an upper bound

Hyperparameters: exploration-exploitation ratio R
Input: neural network N , input α, distance function Lk, distance d, manipulation

magnitude τ , feature extraction function Λ, termination condition tc
Output: an upper bound on FMSR(τ, k, d, α) of N

1: Initialise the search tree T to contain a single node, with input α and cost 0;
2: bestUpperBound← dε

3: while ¬tc do
4: Select a leaf node o of T (with R influencing the selection);
5: Expand o and add its child nodes to T ;
6: for each new node o′ created in the expansion do
7: Randomly simulate moves from o′ until a terminal node o′′;
8: α′′ ← the input associated with o′′;
9: cost← ‖α′′ − α‖k;

10: if cost < bestUpperBound then
11: bestUpperBound← cost
12: end if
13: Backpropagate cost up to the root node;
14: end for
15: end while
16: return bestUpperBound

each o′ ∈ Co, define its weight

w(o, o′) =
d · no′
ro′

+R

√
lnno
no′

(2.10)

and if o is the node we have traversed to, the probability of choosing o′ as the next node is

Probo(o
′) =

w(o, o′)∑
o′′∈Co w(o, o′′)

(2.11)

which is higher for child nodes with greater weights. Note that the first term of the weight

is inversely proportional to the average cost
ro′
no′

so it serves as the average reward of o′, and

the second term is greater if the number of back-propagations via o′ to o is small compared

to that via other child nodes, i.e., if o′ is less explored. Hence, the greater R is, the more we

favour the exploration of a less explored node over the exploitation of a currently good node.
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Admissible A* search

We use A* search with an admissible heuristic for a lower bound on FMSR(τ, k, d, α), as

shown in Algorithm 2. Using the same the definition of g(α′, N(α′)) as that in Equation

(2.8), we can construct an admissible heuristic function.

Lemma 3 Let o be a node in the search tree, and α′ be the input associated to o. Then we

can consider α′ as the state of o. Define the heuristic function h by

h(α′) =
g(α′, N(α′))

maxc∈C,c6=N(α′)(~N(α′) + ~c)
. (2.12)

We have that h is admissible. (Note that h depends only on the state of a node.)

In the implementation, DeepGame uses a lower bound of this heuristic computed from g(α′, N(α′))

and τ , which is still admissible.

Since only nodes after Player II’s action have inputs as their states, we combine each pair

of actions by both players, so that the evaluation function v determines the choice of the next

feature and the next atomic manipulation, i.e., the next atomic manipulation chosen over all

possible dimensions. An expansion will hence create a child node resulting from every possible

atomic manipulation from the current input. By the optimality property of admissible A*

search, if it expands a node with distance d′ from α without encountering an adversarial

example, then there is no adversarial example with distance less than d′ from α. Hence, an

adversarial example found by the algorithm must be a closest adversarial example on the

τ -grid.

2.2 Attention models

This section describes the two attention mechanisms we use to construct attention models.

We assume the reader’s familiarity with convolutional neural networks (CNNs), as described
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Algorithm 2 Admissible A* search for a lower bound

Input: neural network N , input α, distance function Lk, distance d, manipulation
magnitude τ , feature extraction function Λ, termination condition tc

Output: a lower bound on FMSR(τ, k, d, α) of N

1: Initialise frontier to contain a single node o whose state is α;
2: Let v be the evaluation function, so v(o)← h(α);
3: bestLowerBound← 0;
4: while ¬tc do
5: Let o′ be a node in frontier with the minimum value under v;
6: Let α′ be the state of o′;
7: cost← ‖α′ − α‖k;
8: if cost > d then return dε;
9: else if α′ is an adversarial example then return cost;

10: end if
11: if cost > bestLowerBound then
12: bestLowerBound← cost;
13: end if
14: Remove o′ from frontier and expand o′, adding all its child nodes to frontier;
15: for each child node o′′ of o′ do
16: Let α′′ be the state of o′′;
17: v(o′′)← ‖α′′ − α‖k + h(α′′);
18: end for
19: end while
20: return bestLowerBound;

in [GBC16]. We refer to the output of any convolutional layer or pooling layer as a “feature

map”, with a shape of the form (H,W,Fin), so the feature map has H ·W pixels and Fin

channels. The papers we refer to describe attention mechanisms with richer structures, and

we extract a very specific kind of attention mechanism from each paper for this project. The

mechanisms can be added to any part of a CNN that produces a feature map.

2.2.1 Augmenting CNNs using self-attention

We extract one of the attention mechanisms, called self-attention, from the [BZV+19]. As

illustrated in Figure 2.6, given a feature map with the shape (H,W,Fin), we flatten it to a

matrix X with the shape (H ·W,Fin). We can interpret a row of X as the representation of

a pixel by the Fin channels. We then use linear transformations to obtain the matrices XWq,

21



XWk, and XWv respectively. The matrices Wq, Wk and Wv are all trainable parameters. Let

(Fin, dk) be the shape of Wq and Wk, and (Fin, dv) be the shape of Wv. Each row of XWq

is like the query vector of a pixel, each row of XWk the key vector, and each row of Wv the

value vector.

Figure 2.6: A segment of the neural network architecture that uses a self-attention module.
The symbol ⊗ denotes matrix multiplication, and the dimensions of the two input matrices
and the output matrix indicate which input matrix is on the left of the multiplication and
which is on the right.

Consider a pixel corresponding to a row of XWq. Multiplying the row with (XWk)
T has

the effect of taking the dot product between the query vector and every key vector so that

after scaling the result and applying the softmax function, we have a row vector that acts
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like weights for the next step. In the next step, we take the weighted sum of all value vectors

followed by another linear transformation. The resulting row vector is a new representation

of the pixel. We then reshape the new matrix to match the shape of a feature map. Using

the idea of “augmentation” from [BZV+19], we also perform a convolutional operation on

the original feature map and concatenate this output with the output from the self-attention

module. We can tune the hyperparameter dv to control the proportion that the attention

module’s output takes in the concatenated output.

2.2.2 Spatial attention in Convolutional Block Attention Module (CBAM)

From [WPLK18], we extract the spatial attention module, which is the other attention

mechanism we use. Figure 2.7 illustrates its architecture. Given a feature map of the shape

(H,W,Fin), we perform both max pooling and average pooling over the channel dimension,

concatenate the pooling results, and pass it through a convolutional layer. After an element-

wise application of the sigmoid function, we obtain weights for the H ·W pixels. We then

broadcast the weights to all channels, do an element-wise multiplication with the original

feature map and then an element-wise addition with the original feature map to give the

output.

Figure 2.7: A segment of the neural network architecture that uses a CBAM-spatial-attention
module.
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Chapter 3

Improvement on DeepGame

This chapter describes the main changes we made to DeepGame for functionality and effi-

ciency. More details can be found in the Anonymous Github repository.

3.1 Adaptation to this project

We updated the code to use TensorFlow 2 instead of TensorFlow 1. Since Keras is integrated

into TensorFlow 2, there are changes in the libraries that we can use.

We also created modules for building and training the different types of models. Using the

existing DataCollection module, we added code to save data in files, as well as code to extract,

preprocess and analyze the data from the files.

Moreover, we fixed some bugs in the program. For example, the original implementation

of the MCTS algorithm avoids creating a child node by an atomic manipulation that only

causes negligible changes in the model’s outputs. We may view this as a heuristic for pruning

away less promising parts of the search tree, which is justifiable since the state space is

intractable. However, in some of our experiments, especially on the attention models, a node

chosen for expansion has all its child nodes pruned, which caused an error as the program
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tries to randomly sample a node in an empty set. Continuing to use this pruning method,

we fixed the problem by removing the node whose child nodes are all pruned and repeating

the tree traversal to select another leaf node for expansion. If we traverse to a previously

expanded node, i.e., an internal node of the search tree, and find all its children removed this

way, we terminate the search with an appropriate description in the log. Such a situation

would indicate that our heuristic guiding the MCTS algorithm, which is determined by the

exploration-exploitation ratio, is not performing well in finding the best search direction.

3.2 Optimization for efficiency

Our major optimization was the use of concurrent programming for running multiple ex-

periments in parallel. Theoretically, different runs of experiments are independent, so we do

not need any synchronization. However, in a preliminary experiment where we used bash

commands to run multiple experiments in parallel, we encountered an error due to the dif-

ferent processes trying to access the same file. This was unavoidable as they share the files

containing the models and the datasets. Hence, we used the Python Multiprocessing library

to make the file accesses mutually exclusive, but allow the rest of the experiments to run in

parallel. Since the experiments can run for hours, the overhead is negligible when the number

of processes is fewer than the number of cores in the computer.

We also optimized the A* search algorithm. Recall from Algorithm 2 that the cost of a

node is the distance from the node’s state α′ to the initial state α. Hence, if we reach the

same state α′ in two distinct nodes, the two nodes have the same cost, and the searches from

the two nodes are identical in terms of the states reached and their estimated costs. Hence,

we can safely remove one of the two nodes, searching only once from the state α′, i.e., we

can use a graph search. The original program avoids a manipulation that undoes a previous

manipulation, but it allows an input to be reached from different directions. For instance,

let (i, n) denote n atomic manipulations in the dimension i from the initial state α. A set
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of such tuples determines the resulting state. Consider α′ obtained by the manipulations

{((0, 0), 1), ((0, 1), 1)}, α1 by {((0, 0), 1)}, and α2 by {((0, 1), 1)}. The original program ex-

pands both the node for α1 and the node for α2 to produce nodes for α′, and the nodes for

α′ are then expanded separately. This causes the number of nodes with the same state to be

exponential in the number of manipulated dimensions. We improved the efficiency by keeping

a collection of the states of previously expanded nodes and pruning away any newly discov-

ered state that has been discovered by a previous expansion. To represent a state concisely

using discrete values, instead of recording a state α′ ∈ D = [0, 1] directly, we represent it by

a collection of manipulations as we have demonstrated in the example above. Tests showed

that the improved algorithm finds strictly tighter lower bounds for multiple randomly sampled

inputs under the same 30-minute time constraint.
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Chapter 4

Experiment Design

4.1 Building and training models

We follow the architectures of the CNNs in [WWR+18] to build the corresponding attention

models and train the models on the German Traffic Sign Recognition Dataset (GTSRB). To

check that the code for the attention models generates the intended model architectures, we

use the plot model function from the TensorFlow library to plot the generated architectures

and ensure they agree with our expectation. Details about the architectures and the training

are in the appendix. For brevity, we will call the pure CNNs “pure models”, and call the other

two types of models “self-attention models” and “CBAM-spatial-attention models”. This sec-

tion describes the preliminary experiments we conducted to determine some hyperparameters

in the model architectures.

4.1.1 Proportion of attention in self-attention model

As described in [BZV+19], in each attention-augmented part of the self-attention model,

we can tune the proportion of channels that are from the attention module. We tried the

proportions of 0.25, 0.5, 0.75 and 1, and found that 0.25 gave the best validation accuracy,

which is consistent with the result in [BZV+19]. Moreover, the proportion of 1 gave signif-
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icantly lower accuracy, which suggests that the self-attention mechanism cannot replace the

CNN architecture, and that is consistent with the motivation of using attention mechanisms

as an auxiliary tool. Hence, we used 0.25 as the proportion in the subsequent experiments.

4.1.2 Downscaling inputs

We also trained all three types of models on the GTSRB images downscaled by different

factors. Without downscaling, each input from the GTSRB dataset has the shape (48, 48, 3),

which gives 48 ∗ 48 ∗ 3 = 6912 dimensions. The attention models converged to slightly lower

validation accuracies than the pure model, and MCTS could hardly reach the third layer of

the search tree after running for an hour due to the high dimensionality. After downscaling the

inputs to the shape (24, 24, 3), the attention models had almost the same validation accuracies

as before, but the accuracies are now slightly higher than the pure model’s accuracy. The lower

dimensionality also led to exploration deeper down the search tree when we ran DeepGame

on the models. Further downscaling to (12, 12, 3) significantly reduced the accuracies, likely

due to the loss of too much information in the inputs. Hence, to fully exploit the benefits of

attention models and search deeper down the tree, we chose the shape (24, 24, 3).

4.2 Feature extraction

We used the saliency-guided image segmentation procedure as our main feature extraction

method, but we also extracted features using a method based on the Scale Invariant Feature

Transform (SIFT) [Low04] for comparison. Both methods are used in [WWR+18], and the

paper refers to the saliency-guided method as “grey-box” feature extraction since it depends

on the model, and the other method as “black-box” since it is model-independent. For

the grey-box method, the number of features nfeatures is a hyperparameter. The method

ranks pixels by their influence on the model’s output and partitions them in that order into

nfeatures sets of about the same size. By partitioning a pixel (x, y) into a feature λ, we mean

that the dimension (x, y, ch) for each channel ch is in Pλ. In contrast, the black-box method
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determines the number of features, which varies depending on the model and the input. It

identifies keypoints with invariant properties, and each keypoint corresponds to a feature.

Every pixel is then assigned to a feature based on its distances from the keypoints and the

keypoints’ strengths.

4.3 Sampling inputs

Since robustness is only desirable provided that the input is correctly classified, i.e., the

classification outcome of the model is the same as the ground truth, we only consider inputs

correctly classified by all three models for robustness comparison. Due to resource limitations,

we are not able to run the experiment on a large number of inputs to reach a statistical

conclusion. Instead, we sample one input from each class uniformly at random and run the

experiments on all models for the sampled inputs. Since there are 43 classes in the GTSRB

dataset, we sampled 43 inputs.

4.4 Variables

Our objective is to compare the performance of DeepGame on the three types of models.

We start by using the hyperparameter values in the original DeepGame code as default values.

Subsequently, we consider nfeatures, R and the feature extraction method as variables that

can potentially influence the performance, and vary them to observe the outcomes. Following

the experiment design in [Wu20], we try the values 2, 4, 6 and 8 for nfeatures which are below

the default value 10. For the values of R, we try the values 0.5, 1.0, 2.0 and 4.0 around the

default
√

2. Since the variables do not affect the A* search algorithm, as the algorithm is

independent of the features extracted, we only study their effects on the performance of the

MCTS algorithm.
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4.5 Measurements

We observe a few aspects of the performance, namely the bounds obtained as the exper-

iments progress, the adversarial examples found by MCTS, and the features extracted and

manipulated.

Due to the stochastic nature of the MCTS algorithm and the randomness in the parallel

processing, we choose to compare the bounds obtained by different models after the same

number of node expansions (instead of the same running time). This approach is also used

in [Wu20]. We will refer to a node expansion in the search algorithms as an “iteration”. When

comparing experiments that terminated at different numbers of iterations, we use the smallest

one and only consider the progress of each experiment up to that number of iterations.

We are interested in which model obtains the best bound at the end of the experiment, and

the fraction of iterations in which a model has the best bound. For practical applications,

the adversarial examples can be useful in guiding the training of a robust model. Hence, the

number of adversarial examples found is also of interest. Finally, the features provide insight

into the robustness of our models at the specific inputs.
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Chapter 5

Results and Discussion

In this chapter, we will describe and discuss the observations about the bounds, the features

and the adversarial examples found in the experiments.

5.1 Bounds and convergence trends

This section describes the observations about bounds, highlighting similar patterns found

across different sets of experiments. When we discuss upper bounds on the FMSR, the “best”

bound refers to the least upper bound, which corresponds to the distance to the closest

adversarial example found so far. Similarly, the “best” lower bound is the greatest lower

bound. For convenience, we refer to the best bound obtained at the end of an experiment as

the “best final bound”, and we refer to “having the best bound in the most iterations” as “most

consistently best bounded”. In our first set of experiments using the default parameters, the

feature extraction method is grey-box, the number of features nfeatures is 10, the exploration-

exploitation ratio R is
√

2, we perform three simulations for each newly discovered node in

MCTS, and we consider the η(α,L2, 10)-neighbourhood of the original input α. We use τ = 1

for the MCTS algorithm, and τ = 0.01 for the A* search algorithm. τ = 1 allows faster

progress in MCTS, and the upper bounds are distances to adversarial examples found in the

algorithm, so they are always valid. However, the validity of the lower bound is under the
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assumption that our choice of τ = 0.01 is small enough. This is an assumption we had to

make due to the absence of tools that can bound the Lipschitz constants of attention models.

Using the parameters in the first set of experiments as a baseline, we maintained R =
√

2

and the grey-box feature extraction method as we altered nfeatures. Similarly, we maintained

nfeatures = 10 and the grey-box method as we varied R, and we kept nfeatures = 10 and

R =
√

2 when we tried the different feature extraction methods. We investigated how changes

in nfeatures, R and the feature extraction method influence the fraction of samples where each

model obtained the best bounds among all three models. We also fixed the model and observed

the fraction of input samples where each parameter value obtained the best bounds among

all values we tried for the parameter.

5.1.1 Upper bounds

None of the models had a clear advantage in finding the best final bound for all input

samples. Instead, the model that obtained the best final bound depended largely on the

inputs. In the first set of experiments, the pure model obtained the best final bound for

about 21.95% of the input samples, the self-attention model 48.78%, and the CBAM-spatial-

attention model 29.27%. Hence, the self-attention model obtained the best final bound for

a significantly larger fraction of input samples than each of the other models, although the

fraction is not a vast majority. The observations are similar for the other sets of experiments,

as shown in Figure 5.1 and Figure 5.2, where we only see slight fluctuations of fractions as

the variables change. Moreover, the input samples at which each model obtained the best

final bound remained largely unchanged as we varied nfeatures, R and the feature extraction

methods. We highlight that the MCTS algorithm used to obtain the upper bounds uses

randomness, so the statistics are stochastic in nature.

There were similar patterns for the most consistently best bounded model. In the first set

of experiments, the pure model is most consistently best bounded for 24.39% of the input
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Figure 5.1: Graph showing the change in the relative performance of the models in terms of
the best final bound as we varied nfeatures. For each nfeatures value we tested, we plot the
fraction of samples for which a model obtained the best final bound among all three models.

Figure 5.2: Graph showing the change in the relative performance of the models in terms
of the best final bound as we varied R. For each R value we tested, we plot the fraction of
samples for which a model obtained the best final bound among all three models.
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samples, the self-attention model 51.22%, and the CBAM-spatial-attention model 24.39%.

Varying nfeatures and R does not change the fractions significantly, as shown in Figure 5.3

and Figure 5.4.

Figure 5.3: Graph showing the change in the most consistently best bounded model as we
varied nfeatures. For each nfeatures value we tested, we plot the fraction of samples for which
a model was most consistently best bounded among all three models.

The input samples at which a model obtained the best final bound largely overlapped

with the input samples at which the model is most consistently best bounded. This is likely

because, for most input samples, MCTS finds bounds very close to the best final bounds

in early iterations, so the order is the same for most iterations, as shown in Figure 5.5.

Nevertheless, due to the stochastic nature of MCTS, there is no guarantee that the bounds

have converged to the true FMSR.

Now we fix the model, and consider the nfeatures value that gave the best final bound out

of all the values we tested. Figure 5.6 shows that nfeatures = 2 gave the best final bound for

the largest fraction of samples. Moreover, we observe similar trends in the pie charts for both

attention models, where the fraction decreases and then increases as nfeatures increases, and
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Figure 5.4: Graph showing the change in the most consistently best bounded model as we
varied R. For each R value we tested, we plot the fraction of samples for which a model was
most consistently best bounded among all three models.

Figure 5.5: Graph of the best upper bound in terms of L2 distance against the number of
iterations of MCTS, for the test input indexed 1279. The parameters are nfeatures = 10 and
R =

√
2, and the feature extraction method is grey-box.
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the fraction at nfeatures = 10 is comparable to that at nfeatures = 2.

Figure 5.6: Pie charts showing, for a fixed model, the fraction of samples for which each
nfeatures value gave the best final bound out of all the nfeatures values we tested. The models
are pure (left), self-attention (middle), and CBAM-spatial-attention (right) respectively.

Figure 5.7 shows the relative performance among the different values of R for a given model.

For the pure model and the self-attention model, R =
√

2 took the largest fraction, followed

closely by R = 4.0. For the CBAM-spatial-attention model, R =
√

2 gave the best final bound

for the largest fraction.

Figure 5.7: Bar charts showing, for a fixed model, the fraction of samples for which each R
value gave the best final bound out of all the R values we tested. The models are pure (left),
self-attention (middle), and CBAM-spatial-attention (right) respectively.

Fixing the model, Figure 5.8 shows that the grey-box method obtained the best final bound

for the larger fraction of samples for the pure and the self-attention models, whereas the black-

box method had the larger fraction for the CBAM-spatial-attention model. Nevertheless, the

two methods’ fractions are very close.
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Figure 5.8: Pie charts showing, for a fixed model, the fraction of samples for which each
feature extraction method gave the best final bound between the two methods. When the
two methods gave the same final bound for an input sample, we split the count evenly as
if each method gave the best final bound for half a sample. The models are pure (left),
self-attention (middle), and CBAM-spatial-attention (right) respectively.

5.1.2 Lower bounds

Since the A* search is deterministic and independent of the variables we identified, we only

performed one set of experiments running the A* search for each model and each input sample.

We chose τ = 0.01 as the manipulation magnitude, which does not provide the theoretical

guarantees in Chapter 2 since we do not know the Lipschitz constants of the models. Hence,

the output of the algorithm may not be real lower bounds, but we can still look at the relative

performance of the algorithm on the different models.

Similar to what we observed about the upper bounds, the performance depended much

on the inputs. The pure model obtained the best final bound for 39.15% of the samples,

the self-attention model 37.98%, and the CBAM-spatial-attention model 22.87%. We observe

similar fractions for the most consistently best bounded models. The pure model was the

most consistently best bounded for 45.74% of the samples, the self-attention model 36.43%,

and the CBAM-spatial-attention model 17.83%.

We focus on a specific input, shown in Figure 5.9, to observe the convergence trends of its

bounds. Figure 5.10 shows the convergence trends of the upper bounds and the lower bounds

for the input, with some sample images generated in the searches shown in Figure 5.11.
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Figure 5.9: The test input indexed 7268.

Figure 5.10: The convergence trends of the bounds for the test input indexed 7268. Note the
different scales used for the upper bounds and the lower bounds.

We can see both the upper and the lower bounds converging as the experiment runs for

more iterations, but the improvement slows down over time. Moreover, the best lower bound

found by the A* search is still orders of magnitude smaller than the best upper bound found

by MCTS. We can see from Figure 5.11 that the progress made in the A* search is hardly

visible to humans. The slow progress in the A* search is partly attributed to the small value

of τ , so if τ has to be small to fulfil the theoretical requirement, the current algorithms cannot

provide tight bounds in a reasonable amount of time.
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Figure 5.11: Images generated in the searches for the bounds for the test input indexed 7268,
showing the progress in each search.

5.2 Features and manipulations

The saliency-guided grey-box feature extraction depends on the models, and the pixels are

ranked before partitioning such that the first feature contains pixels that the output is the

most sensitive to. The method identified the most important features in the foreground for

most inputs, as shown in Figure 5.12. When the adversarial examples are close to the original

input, the manipulations that gave the closest adversarial examples found in the experiments

tend to occur in the most important features. However, for input samples whose closest

adversarial examples are further away, the manipulations occur in many different features.

We can interpret the manipulations as the differences between the adversarial example and

the original input, so we need more manipulations to reach an adversarial example that is

further away from the original input.

The black-box feature extraction is independent of the models, and the features are not

ranked by any order. For many input samples, the manipulations occur in different features
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Figure 5.12: Diagrams showing the features of the input indexed 1279 (shown on the left),
resulting from the grey-box feature extraction with nfeatures = 10. The feature diagrams are
for the pure (left), the self-attention (right), and the CBAM-spatial-attention (right) models
respectively. The first feature is the one with the darkest colour. The white number on a
pixel indicates the number of channels in the pixel that are manipulated to obtain the closest
adversarial example (found by MCTS using the default parameters).

like those shown in Figure 5.13, and sometimes they are almost evenly distributed across the

features.

Figure 5.13: Diagrams showing the features of the input indexed 1279, resulting from the
black-box feature extraction. The feature diagrams are for the pure (left), the self-attention
(right), and the CBAM-spatial-attention (right) models respectively.

We also found that for some inputs, the pixels in the most important feature from the

self-attention model are more scattered, as shown in Figure 5.14. This could suggest that the

self-attention model identified multiple things in the input to focus on, but not necessarily the

important ones for the classification task. This is corroborated by the finding in [LCKK22],

which suggests that attention models may not be more robust than pure models.
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Figure 5.14: Diagrams showing the features of the input indexed 8320, resulting from the
grey-box feature extraction with nfeatures = 10. The features are for the pure (left), the
self-attention (right), and the CBAM-spatial-attention (right) models respectively.

5.3 Adversarial examples

MCTS found adversarial examples for all models for 41 out of the 43 input samples. The

numbers of adversarial examples found throughout an experiment range from fewer than 10

to a few hundred, but in most experiments more than a hundred adversarial examples are

found. In all sets of experiments, the self-attention model is the model that obtained the most

adversarial examples for the majority of the input samples.

Figure 5.15 shows the best adversarial examples found in the experiments for three input

samples. The adversarial examples are very close to the original input, but the models classi-

fied them into the wrong categories. In particular, for the input indexed 1279 whose true class

is “speed limit 20”, the pure model classified the adversarial example into “speed limit 30”

with confidence 0.643, the self-attention model classified the adversarial example into “speed

limit 30” with confidence 0.734, and the CBAM-spatial-attention model classified the adver-

sarial example into “speed limit 80” with confidence 0.956. We observe that the adversarial

examples against the attention models are sometimes more dangerous than those against the

pure model. For instance, we can see in Figure 5.15 that the adversarial examples for the

image indexed 1279 against the self-attention model and for the image indexed 8320 against

the CBAM-spatial-attention model look almost identical to their original images.
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Figure 5.15: The closest adversarial examples of three inputs found by MCTS for the three
models. Each group of three pictures show, from left to right, the features extracted (where
pixels with the same colour are in the same partition), the difference between the adversarial
example and the original image, and the adversarial example.

While we varied the values of nfeatures and R, we observe that the self-attention model

always gave the most adversarial examples among the three models for most input samples,

as shown in Figure 5.16 and Figure 5.17. The same is true when we changed the feature

extraction method to the black-box method. With our previous observation that the self-

attention model gives the least final upper bounds for the largest fraction of inputs, this could

indicate that for most inputs, the self-attention model has more adversarial examples that are

close to the original image compared to the other models.

5.4 Running time

An iteration of MCTS can take only a few seconds if the simulations reach terminal nodes

quickly by finding adversarial examples; but it may take up to a few minutes if the simulations

only terminate due to reaching a point outside η(α,L2, 10). The total time taken increases

with the number of simulations we require for each node, and the relationship is expected to

be proportional since the simulations are independent.
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Figure 5.16: Graph showing the change in the model with the most adversarial examples found
as we varied nfeatures. For each nfeatures value we tested, we plot the fraction of samples for
which a model gave the most adversarial examples among all three models.

Figure 5.17: Graph showing the change in the model with the most adversarial examples
found as we varied R. For each R value we tested, we plot the fraction of samples for which
a model gave the most adversarial examples among all three models.
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At the beginning of the A* search, an iteration takes seconds, but the time taken by an

iteration increases to hours deeper down the search tree, as the number of nodes to be explored

increases exponentially with the depth of the tree, and we need to select one with the best

value under the evaluation function for the next expansion. The asymptotic running time is

consistent with that described in [Wu20].
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Chapter 6

Conclusion

In this project, we improved the DeepGame tool from [WWR+18], and we constructed and

trained two attention models with architectures from [BZV+19,WPLK18] using the GTSRB

dataset. We then demonstrated the use of DeepGame on the models for bounding pointwise

robustness and finding adversarial examples, and compared its performances on the atten-

tion models with the performance on the pure CNN model. We identified a few parameters

that could affect the upper bounds found by the MCTS algorithm, namely the number of

features extracted, the exploration-exploitation ratio, and the feature extraction method, and

we experimented on different values of the parameters and compared the results.

We found that for the inputs we sampled, the relative performance of DeepGame on the

different models, for both the upper and the lower bounds, depends largely on the inputs.

Nevertheless, for a given model, specific parameter values could give better upper bounds for

a large fraction of the input samples. We also showed that the MCTS algorithm can find

many adversarial examples for the attention models, comparable to its performance on the

pure model, and the adversarial examples can be useful for guiding the training of neural

networks for greater robustness. By observing the features extracted and manipulated, we

found evidence that the saliency-guided grey-box feature extraction method could extract
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meaningful features, and that could help guide the MCTS search. Meanwhile, we observed

that the self-attention model obtained the least final upper bounds and the most adversarial

examples in MCTS for the largest fraction of input samples, while DeepGame’s performance on

the CBAM-spatial-attention model is closer to that on the pure CNN model. This suggests

that the self-attention model may be less robust for the image classification task, whereas

CBAM-spatial-attention which has a structure closer to CNNs may be more suitable for such

tasks.
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Chapter 7

Reflection and future work

Given the time constraint of the project, we could only try two different attention models

on 43 samples. The sample size is too small for us to make any statistical observation, and we

can only discuss observations specific to the models and the input samples we used. Hence,

future research may investigate other types of attention models and perform experiments on

more input samples and on different datasets to reach a more general conclusion.

Moreover, the problem of finding the finite maximum safe radius (FMSR) is intractable,

so we need to use heuristics in the search problem for greater efficiency. We used existing

heuristics in both the MCTS algorithm and the A* search algorithm to guide our search for

bounds on the FMSR, but there may be better heuristics for the task. The heuristic for

the A* search needs a Lipschitz constant of the model so that the search is guaranteed to

produce lower bounds, but there is currently no existing method to find Lipschitz constants

of the attention models, so we could not have the theoretical guarantee. Finding better

heuristics and building models with provably small Lipschitz constants can both contribute

to the efficiency of the tool.

Another issue we did not resolve is finding a standard for a fair comparison. The paral-

lelization improved the efficiency, but also introduced more uncertainty into the running time
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allocated by the operating system to each run of the experiment, so it may not be fair to

compare the results given the same time constraint; the time taken by each iteration depends

much on the model and the input, so comparison based on the same number of iterations may

not be fair either. There may be other standards of comparison whose fairness could be more

justifiable.

On a larger scale, a limitation of this project is that it focuses on pointwise robustness

defined by a specific search problem, and this notion of robustness can be very dependent on

the input. The performance of attention models under other notions of robustness, such as

global robustness, is another area to explore.
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Chapter 9

Appendix

9.1 Model architectures and training parameters

9.1.1 Pure CNN model

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

conv2d (Conv2D) (None, 22, 22, 64) 1792

_________________________________________________________________

conv2d_1 (Conv2D) (None, 20, 20, 64) 36928

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 10, 10, 64) 0

_________________________________________________________________

conv2d_2 (Conv2D) (None, 8, 8, 128) 73856

_________________________________________________________________

conv2d_3 (Conv2D) (None, 6, 6, 128) 147584

_________________________________________________________________

max_pooling2d_1 (None, 3, 3, 128) 0

(MaxPooling2D)

_________________________________________________________________

flatten (Flatten) (None, 1152) 0

_________________________________________________________________

dense (Dense) (None, 256) 295168

_________________________________________________________________
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dropout (Dropout) (None, 256) 0

_________________________________________________________________

dense_1 (Dense) (None, 256) 65792

_________________________________________________________________

dense_2 (Dense) (None, 43) 11051

_________________________________________________________________

softmax (Softmax) (None, 43) 0

=================================================================

Total params: 632,171

Trainable params: 632,171

Non-trainable params: 0

_________________________________________________________________

• Batch size = 128

• Number of epochs = 50

• Optimizer = Root Mean Squared propagation (RMSprop) (learning rate = 0.0001, decay=10−6)

• Loss function = categorical crossentropy

• Training accuracy = 95.58%

• Testing accuracy = 93.27%

9.1.2 Self-attention model

_____________________________________________________________________________________________

Layer (type) Output Shape Param # Connected to

=============================================================================================

input_1 (InputLayer) [(None, 24, 24, 3)] 0

_____________________________________________________________________________________________

conv2d_1 (Conv2D) (None, 24, 24, 48) 192 input_1[0][0]

_____________________________________________________________________________________________

tf.split [(None, 24, 24, 16), 0 conv2d_1[0][0]

(None, 24, 24, 16),

(None, 24, 24, 16)]

_____________________________________________________________________________________________

tf.reshape_1 (None, 576, 16) 0 tf.split[0][1]
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_____________________________________________________________________________________________

tf.reshape (None, 576, 16) 0 tf.split[0][0]

_____________________________________________________________________________________________

tf.linalg.matmul (None, 576, 576) 0 tf.reshape_1[0][0]

tf.reshape[0][0]

_____________________________________________________________________________________________

tf.math.multiply (None, 576, 576) 0 tf.linalg.matmul[0][0]

_____________________________________________________________________________________________

tf.nn.softmax (None, 576, 576) 0 tf.math.multiply[0][0]

_____________________________________________________________________________________________

tf.reshape_2 (None, 576, 16) 0 tf.split[0][2]

_____________________________________________________________________________________________

tf.linalg.matmul_1 (None, 576, 16) 0 tf.nn.softmax[0][0]

tf.reshape_2[0][0]

_____________________________________________________________________________________________

tf.reshape_3 (None, 24, 24, 16) 0 tf.linalg.matmul_1[0][0]

_____________________________________________________________________________________________

conv2d (Conv2D) (None, 24, 24, 48) 1344 input_1[0][0]

_____________________________________________________________________________________________

conv2d_2 (Conv2D) (None, 24, 24, 16) 272 tf.reshape_3[0][0]

_____________________________________________________________________________________________

tf.concat (None, 24, 24, 64) 0 conv2d[0][0]

conv2d_2[0][0]

_____________________________________________________________________________________________

batch_normalization (None, 24, 24, 64) 256 tf.concat[0][0]

(BatchNormalization)

_____________________________________________________________________________________________

conv2d_3 (Conv2D) (None, 22, 22, 64) 36928 batch_normalization[0][0]

_____________________________________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 11, 11, 64) 0 conv2d_3[0][0]

_____________________________________________________________________________________________

conv2d_5 (Conv2D) (None, 11, 11, 96) 6240 max_pooling2d[0][0]

_____________________________________________________________________________________________

tf.split_1 [(None, 11, 11, 32), 0 conv2d_5[0][0]

(None, 11, 11, 32),

(None, 11, 11, 32)]

_____________________________________________________________________________________________

tf.reshape_5 (None, 121, 32) 0 tf.split_1[0][1]

_____________________________________________________________________________________________
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tf.reshape_4 (None, 121, 32) 0 tf.split_1[0][0]

_____________________________________________________________________________________________

tf.linalg.matmul_2 (None, 121, 121) 0 tf.reshape_5[0][0]

tf.reshape_4[0][0]

_____________________________________________________________________________________________

tf.math.multiply_1 (None, 121, 121) 0 tf.linalg.matmul_2[0][0]

_____________________________________________________________________________________________

tf.nn.softmax_1 (None, 121, 121) 0 tf.math.multiply_1[0][0]

_____________________________________________________________________________________________

tf.reshape_6 (None, 121, 32) 0 tf.split_1[0][2]

_____________________________________________________________________________________________

tf.linalg.matmul_3 (None, 121, 32) 0 tf.nn.softmax_1[0][0]

tf.reshape_6[0][0]

_____________________________________________________________________________________________

tf.reshape_7 (None, 11, 11, 32) 0 tf.linalg.matmul_3[0][0]

_____________________________________________________________________________________________

conv2d_4 (Conv2D) (None, 11, 11, 96) 55392 max_pooling2d[0][0]

_____________________________________________________________________________________________

conv2d_6 (Conv2D) (None, 11, 11, 32) 1056 tf.reshape_7[0][0]

_____________________________________________________________________________________________

tf.concat_1 (None, 11, 11, 128) 0 conv2d_4[0][0]

conv2d_6[0][0]

_____________________________________________________________________________________________

batch_normalization_1 (None, 11, 11, 128) 512 tf.concat_1[0][0]

(BatchNormalization)

_____________________________________________________________________________________________

conv2d_7 (Conv2D) (None, 9, 9, 128) 147584 batch_normalization_1[0][0]

_____________________________________________________________________________________________

max_pooling2d_1 (MaxPooling2D) (None, 4, 4, 128) 0 conv2d_7[0][0]

_____________________________________________________________________________________________

flatten (Flatten) (None, 2048) 0 max_pooling2d_1[0][0]

_____________________________________________________________________________________________

dense (Dense) (None, 256) 524544 flatten[0][0]

_____________________________________________________________________________________________

dropout (Dropout) (None, 256) 0 dense[0][0]

_____________________________________________________________________________________________

dense_1 (Dense) (None, 256) 65792 dropout[0][0]

_____________________________________________________________________________________________

dense_2 (Dense) (None, 43) 11051 dense_1[0][0]
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_____________________________________________________________________________________________

softmax (Softmax) (None, 43) 0 dense_2[0][0]

=============================================================================================

Total params: 851,163

Trainable params: 850,779

Non-trainable params: 384

_____________________________________________________________________________________________

• Batch size = 128

• Number of epochs = 50

• Optimizer = RMSprop (learning rate = 0.0001, decay=10−6)

• Loss function = categorical crossentropy

• Training accuracy = 98.73%

• Testing accuracy = 94.73%

9.1.3 CBAM-spatial-attention model

_____________________________________________________________________________________________

Layer (type) Output Shape Param # Connected to

=============================================================================================

input_1 (InputLayer) [(None, 24, 24, 3)] 0

_____________________________________________________________________________________________

conv2d (Conv2D) (None, 22, 22, 64) 1792 input_1[0][0]

_____________________________________________________________________________________________

tf.math.reduce_mean (None, 22, 22) 0 conv2d[0][0]

_____________________________________________________________________________________________

tf.math.reduce_max (None, 22, 22) 0 conv2d[0][0]

_____________________________________________________________________________________________

tf.reshape (None, 22, 22, 1) 0 tf.math.reduce_mean[0][0]

_____________________________________________________________________________________________

tf.reshape_1 (None, 22, 22, 1) 0 tf.math.reduce_max[0][0]

_____________________________________________________________________________________________

tf.concat (None, 22, 22, 2) 0 tf.reshape[0][0]

tf.reshape_1[0][0]
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_____________________________________________________________________________________________

conv2d_1 (Conv2D) (None, 22, 22, 1) 99 tf.concat[0][0]

_____________________________________________________________________________________________

tf.tile (None, 22, 22, 64) 0 conv2d_1[0][0]

_____________________________________________________________________________________________

tf.math.multiply (None, 22, 22, 64) 0 conv2d[0][0]

tf.tile[0][0]

_____________________________________________________________________________________________

add (Add) (None, 22, 22, 64) 0 conv2d[0][0]

tf.math.multiply[0][0]

_____________________________________________________________________________________________

conv2d_2 (Conv2D) (None, 20, 20, 64) 36928 add[0][0]

_____________________________________________________________________________________________

tf.math.reduce_mean_1 (None, 20, 20) 0 conv2d_2[0][0]

_____________________________________________________________________________________________

tf.math.reduce_max_1 (None, 20, 20) 0 conv2d_2[0][0]

_____________________________________________________________________________________________

tf.reshape_2 (None, 20, 20, 1) 0 tf.math.reduce_mean_1[0][0]

_____________________________________________________________________________________________

tf.reshape_3 (None, 20, 20, 1) 0 tf.math.reduce_max_1[0][0]

_____________________________________________________________________________________________

tf.concat_1 (None, 20, 20, 2) 0 tf.reshape_2[0][0]

tf.reshape_3[0][0]

_____________________________________________________________________________________________

conv2d_3 (Conv2D) (None, 20, 20, 1) 99 tf.concat_1[0][0]

_____________________________________________________________________________________________

tf.tile_1 (None, 20, 20, 64) 0 conv2d_3[0][0]

_____________________________________________________________________________________________

tf.math.multiply_1 (None, 20, 20, 64) 0 conv2d_2[0][0]

tf.tile_1[0][0]

_____________________________________________________________________________________________

add_1 (Add) (None, 20, 20, 64) 0 conv2d_2[0][0]

tf.math.multiply_1[0][0]

_____________________________________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 10, 10, 64) 0 add_1[0][0]

_____________________________________________________________________________________________

conv2d_4 (Conv2D) (None, 8, 8, 128) 73856 max_pooling2d[0][0]

_____________________________________________________________________________________________

tf.math.reduce_mean_2 (None, 8, 8) 0 conv2d_4[0][0]
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_____________________________________________________________________________________________

tf.math.reduce_max_2 (None, 8, 8) 0 conv2d_4[0][0]

_____________________________________________________________________________________________

tf.reshape_4 (None, 8, 8, 1) 0 tf.math.reduce_mean_2[0][0]

_____________________________________________________________________________________________

tf.reshape_5 (None, 8, 8, 1) 0 tf.math.reduce_max_2[0][0]

_____________________________________________________________________________________________

tf.concat_2 (None, 8, 8, 2) 0 tf.reshape_4[0][0]

tf.reshape_5[0][0]

_____________________________________________________________________________________________

conv2d_5 (Conv2D) (None, 8, 8, 1) 99 tf.concat_2[0][0]

_____________________________________________________________________________________________

tf.tile_2 (None, 8, 8, 128) 0 conv2d_5[0][0]

_____________________________________________________________________________________________

tf.math.multiply_2 (None, 8, 8, 128) 0 conv2d_4[0][0]

tf.tile_2[0][0]

_____________________________________________________________________________________________

add_2 (Add) (None, 8, 8, 128) 0 conv2d_4[0][0]

tf.math.multiply_2[0][0]

_____________________________________________________________________________________________

conv2d_6 (Conv2D) (None, 6, 6, 128) 147584 add_2[0][0]

_____________________________________________________________________________________________

tf.math.reduce_mean_3 (None, 6, 6) 0 conv2d_6[0][0]

_____________________________________________________________________________________________

tf.math.reduce_max_3 (None, 6, 6) 0 conv2d_6[0][0]

_____________________________________________________________________________________________

tf.reshape_6 (None, 6, 6, 1) 0 tf.math.reduce_mean_3[0][0]

_____________________________________________________________________________________________

tf.reshape_7 (None, 6, 6, 1) 0 tf.math.reduce_max_3[0][0]

_____________________________________________________________________________________________

tf.concat_3 (None, 6, 6, 2) 0 tf.reshape_6[0][0]

tf.reshape_7[0][0]

_____________________________________________________________________________________________

conv2d_7 (Conv2D) (None, 6, 6, 1) 99 tf.concat_3[0][0]

_____________________________________________________________________________________________

tf.tile_3 (None, 6, 6, 128) 0 conv2d_7[0][0]

_____________________________________________________________________________________________

tf.math.multiply_3 (None, 6, 6, 128) 0 conv2d_6[0][0]

tf.tile_3[0][0]
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_____________________________________________________________________________________________

add_3 (Add) (None, 6, 6, 128) 0 conv2d_6[0][0]

tf.math.multiply_3[0][0]

_____________________________________________________________________________________________

max_pooling2d_1 (MaxPooling2D) (None, 3, 3, 128) 0 add_3[0][0]

_____________________________________________________________________________________________

flatten (Flatten) (None, 1152) 0 max_pooling2d_1[0][0]

_____________________________________________________________________________________________

dense (Dense) (None, 256) 295168 flatten[0][0]

_____________________________________________________________________________________________

dropout (Dropout) (None, 256) 0 dense[0][0]

_____________________________________________________________________________________________

dense_1 (Dense) (None, 256) 65792 dropout[0][0]

_____________________________________________________________________________________________

dense_2 (Dense) (None, 43) 11051 dense_1[0][0]

_____________________________________________________________________________________________

softmax (Softmax) (None, 43) 0 dense_2[0][0]

=============================================================================================

Total params: 632,567

Trainable params: 632,567

Non-trainable params: 0

_____________________________________________________________________________________________

• Batch size = 128

• Number of epochs = 50

• Optimizer = RMSprop (learning rate = 0.0001, decay=10−6)

• Loss function = categorical crossentropy

• Training accuracy = 98.00%

• Testing accuracy = 94.66%
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9.2 DeepGame parameters

9.2.1 MCTS

• Number of simulations per iteration = 3

• Given the input sample α, search in η(α,L2, 10)

• τ = 1

9.2.2 A* search

• Given the input sample α, search in η(α,L2, 10)

• τ = 0.01

9.3 Hardware and software platforms

9.3.1 Hardware

• 6 NVIDIA 2080Ti GPUs

• 4 20-core Intel Core Xeon 6230’s

9.3.2 Software

• Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0-147-generic x86 64)

• Conda 4.10.3

• Python 3.9.7 with tensorflow-gpu 2.4.1
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